分析 (1)通過取CE的中點(diǎn)G,利用三角形的中位線定理和平行四邊形的性質(zhì)及線面平行的判定定理即可證明;
(2)利用三棱錐的體積公式計(jì)算,即可求A到平面BCE的距離.
解答
(1)證明:取CE的中點(diǎn)G,連接FG、BG.
∵F為CD的中點(diǎn),∴GF∥DE且$GF=\frac{1}{2}DE$.
∵AB⊥平面ACD,DE⊥平面ACD,
∴AB∥DE,∴GF∥AB,
又$AB=\frac{1}{2}DE$,∴GF=AB.
∴四邊形GFAB為平行四邊形,則AF∥BG.
∵AF?平面BCE,BG?平面BCE,∴AF∥平面BCE.
(2)連接AE,設(shè)A到平面BCE的距離為h,
在△BCE中,$BC=BE=\sqrt{5}$,$CE=2\sqrt{2}$,
∴${S_{△BCE}}=\frac{1}{2}×2\sqrt{2}×\sqrt{3}=\sqrt{6}$,
又$CH=\sqrt{3}$,${S_{△ABE}}=\frac{1}{2}×1×2=1$,
∴由VA-BCE=VC-ABE,即$\frac{1}{3}•h•{S_{△BCE}}=\frac{1}{3}•CH•{S_{△ABE}}$(CH為正△ACD的高),
∴$h=\frac{{\sqrt{2}}}{2}$
即點(diǎn)A到平面BCE的距離為$\frac{{\sqrt{2}}}{2}$.
點(diǎn)評(píng) 熟練掌握線面平行的判定定理和性質(zhì)定理及棱錐的體積計(jì)算公式是解題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 大前提錯(cuò)誤 | B. | 小前提錯(cuò)誤 | C. | 推理形式錯(cuò)誤 | D. | 是正確的 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{1}{2}$ | B. | $\frac{\sqrt{2}}{2}$ | C. | 1 | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | [$\frac{π}{12}$,$\frac{π}{4}$] | B. | [$\frac{π}{6}$,$\frac{5π}{12}$) | C. | [$\frac{π}{6}$,$\frac{π}{3}$] | D. | ($\frac{π}{6}$,$\frac{π}{4}$] |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com