分析 分別求出不等式組$\left\{\begin{array}{l}{\frac{x-1}{2}+\frac{2x+1}{3}>x+\frac{1}{6}}\\{11+3x<5x+1}\end{array}\right.$中兩個不等式的解集,再求它們的交集即可.
解答 解:解不等式組$\left\{\begin{array}{l}{\frac{x-1}{2}+\frac{2x+1}{3}>x+\frac{1}{6}}\\{11+3x<5x+1}\end{array}\right.$,得
$\left\{\begin{array}{l}{x>2}\\{x>5}\end{array}\right.$,
即x>5;
∴原不等式組的解集為{x|x>5}.
點評 本題考查了一元一次不等式組的解法與應(yīng)用問題,是基礎(chǔ)題目.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | ①② | B. | ③④ | C. | ①③ | D. | ②④ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com