【題目】已知函數(shù)
(
為實常數(shù)).
(1)若
,寫出
的單調(diào)遞增區(qū)間(直接寫結(jié)果)
(2)若
,設(shè)
在區(qū)間
的最小值為
,求
的表達(dá)式;
(3)設(shè)
,若函數(shù)
在區(qū)間
上是增函數(shù),求實數(shù)
的取值范圍.
參考結(jié)論:函數(shù)
(
為常數(shù)),
時,
在
上遞增;
時,
在
上遞減,
上遞增.
【答案】(1)
,
;(2)
;(3) ![]()
【解析】
(1)改寫成分段函數(shù)后,根據(jù)二次函數(shù)的對稱軸可得;
(2)討論二次函數(shù)的對稱軸與區(qū)間
的關(guān)系得單調(diào)性,可得最小值;
(3)對
分4種情況討論,根據(jù)參考結(jié)論可得.
(1)當(dāng)
時,
,
的單調(diào)遞增區(qū)間為:
,
.
(2)因為
所以當(dāng)
時,![]()
,
若
,即
時,
在區(qū)間
上是增函數(shù),所以
,
若
,即
時,
,
若
,即
時,
在區(qū)間
上是減函數(shù),
,
所以
.
(3)當(dāng)
時,
,
當(dāng)
且
,即
時,由參考結(jié)論知,
在
上遞增,所以在
也遞增,
當(dāng)
且
,即
時,
,由參考結(jié)論知,
在
上遞增,依題意可得,
,解得,
,
當(dāng)
時,
,由參考結(jié)論知,
在
上遞增,依題意可得,
,化簡得,
,解得,
,
當(dāng)
時,
在
上遞增,
綜上所述:實數(shù)
的取值范圍是:
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列四個命題:
①如果平面
外一條直線
與平面
內(nèi)一條直線
平行,那么
;
②過空間一定點有且只有一條直線與已知平面垂直;
③如果一條直線垂直于一個平面內(nèi)的無數(shù)條直線,那么這條直線與這個平面垂直;
④若兩個相交平面都垂直于第三個平面,則這兩個平面的交線垂直于第三個平面.
其中真命題的個數(shù)為
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點
是平行四邊形
所在平面外一點,如果
,
,
.(1)求證:
是平面
的法向量;
(2)求平行四邊形
的面積.
【答案】(1)證明見解析;(2)
.
【解析】試題分析:
(1)由題意結(jié)合空間向量數(shù)量積的運算法則計算可得
,
.則
,
,結(jié)合線面垂直的判斷定理可得
平面
,即
是平面
的法向量.
(2)利用平面向量的坐標(biāo)計算可得
,
,
,則
,
,
.
試題解析:
(1)∵
,
.
∴
,
,又
,∴
平面
,
∴
是平面
的法向量.
(2)∵
,
,
∴
,
∴
,
故
,
.
【題型】解答題
【結(jié)束】
19
【題目】(1)求圓心在直線
上,且與直線
相切于點
的圓的方程;
(2)求與圓
外切于點
且半徑為
的圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
⑴當(dāng)
時,求函數(shù)
的極值;
⑵若存在與函數(shù)
,
的圖象都相切的直線,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在
上的函數(shù)
,如果滿足:對任意
,存在常數(shù)
,都有
成立,則稱
是
上的有界函數(shù),其中
稱為函數(shù)
的上界.已知函數(shù)
.
(1)當(dāng)
時,求函數(shù)
在
上的值域,并判斷函數(shù)
在
上是否為有界函數(shù),請說明理由;
(2)若
是
上的有界函數(shù),且
的上界為3,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)是定義域在R上的奇函數(shù),當(dāng)x>0時,f(x)=x2﹣2x.
(1)求出函數(shù)f(x)在R上的解析式;
(2)寫出函數(shù)的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角梯形
中,
,且
分別為線段
的中點,沿
把
折起,使
,得到如下的立體圖形.
(1)證明:平面
平面
;
(2)若
,求點
到平面
的距離.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了確保神舟飛船發(fā)射時的信息安全,信息須加密傳輸,發(fā)送方由明文→密文(加密),接受方由密文→明文(解密),已知加密的方法是:密碼把英文的明文(真實文)按字母分解,其中英文的a,b,c,…,z的26個字母(不論大小寫)依次對應(yīng)1,2,3,…,26這26個自然數(shù)(見下表):
a | b | c | d | e | f | g | h | i | j | k | l | m |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
n | o | p | q | r | s | t | u | v | w | x | y | z |
14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 |
通過變換公式:
,將明文轉(zhuǎn)換成密文,如
,即h變換成q;
,即e變換成c.若按上述規(guī)定,若將明文譯成的密文是shxc,那么原來的明文是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知直線
的參數(shù)方程是
(
是參數(shù)),圓
的極坐標(biāo)方程為
.
(Ⅰ)求圓心
的直角坐標(biāo);
(Ⅱ)由直線
上的點向圓
引切線,求切線長的最小值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com