【題目】已知直線
的參數(shù)方程為
(
為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),
軸的非負(fù)半軸為極軸建立極坐標(biāo)系,圓
的極坐標(biāo)方程為
,直線
與圓
交于
,
兩點(diǎn).
(1)求圓
的直角坐標(biāo)方程及弦
的長;
(2)動(dòng)點(diǎn)
在圓
上(不與
,
重合),試求
的面積的最大值.
【答案】(1)
;(2)
.
【解析】試題分析:(1)利用平面直角坐標(biāo)系與極坐標(biāo)系間的轉(zhuǎn)化關(guān)系,可得圓的直角坐標(biāo)方程,將直線的參數(shù)方程代入,利用參數(shù)的幾何意義可求得弦
的長;(2)寫出圓的參數(shù)方程,利用點(diǎn)到直線的距離公式,可得
,可求出
的最大值,即求得
的面積的最大值.
試題分析:(1)由
得
,所以
,所以圓
的直角坐標(biāo)方程為
.將直線
的參數(shù)方程代入圓
,并整理得
,解得
,
.所以直線
被圓
截得的弦長為
.
(2)直線
的普通方程為
.圓
的參數(shù)方程為
(
為參數(shù)),
可設(shè)曲線
上的動(dòng)點(diǎn)
,則點(diǎn)
到直線
的距離
,當(dāng)
時(shí),
取最大值,且
的最大值為
.
所以
,即
的面積的最大值為
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知一個(gè)幾何體的三視圖如圖所示. ![]()
(1)求此幾何體的表面積;
(2)在如圖的正視圖中,如果點(diǎn)A為所在線段中點(diǎn),點(diǎn)B為頂點(diǎn),求在幾何體側(cè)面上從點(diǎn)A到點(diǎn)B的最短路徑的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知兩個(gè)無窮數(shù)列
和
的前
項(xiàng)和分別為
,
,
,
,對(duì)任意的
,都有
.
(1)求數(shù)列
的通項(xiàng)公式;
(2)若
為等差數(shù)列,對(duì)任意的
,都有
.證明:
;
(3)若
為等比數(shù)列,
,
,求滿足
的
值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知三棱錐A﹣BCD的各個(gè)棱長都相等,E,F(xiàn)分別是棱AB,CD的中點(diǎn),則EF與BC所成的角是( ) ![]()
A.90°
B.60°
C.45°
D.30°
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某車間為了規(guī)定工時(shí)定額,需要確定加工零件所花費(fèi)的時(shí)間,為此做了四次試驗(yàn),得到的數(shù)據(jù)如表:
零件的個(gè)數(shù)x(個(gè)) | 2 | 3 | 4 | 5 |
加工的時(shí)間y(小時(shí)) | 2.5 | 3 | 4 | 4.5 |
(1)求出y關(guān)于x的線性回歸方程
;
(2)試預(yù)測加工10個(gè)零件需要多少小時(shí)?
(參考公式:
=
=
;
;)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖給出的是計(jì)算
的值的一個(gè)程序框圖,判斷框內(nèi)應(yīng)填入的條件是( ) ![]()
A.i<20
B.i>20
C.i<10
D.i>10
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四棱錐P﹣ABCD中,PD⊥底面ABCD,且底面ABCD是邊長為2的正方形,M、N分別為PB、PC的中點(diǎn). ![]()
(1)證明:MN∥平面PAD;
(2)若PB與平面ABCD所成的角為45°,求三棱錐C﹣BDN的體積V.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的方程為
:
,過點(diǎn)
的一條直線與拋物線
交于
兩點(diǎn),若拋物線在
兩點(diǎn)的切線交于點(diǎn)
.
(1)求點(diǎn)
的軌跡方程;
(2)設(shè)直線
的斜率存在,取為
,取直線
的斜率為
,請(qǐng)驗(yàn)證
是否為定值?若是,計(jì)算出該值;若不是,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}與{bn},若a1=3且對(duì)任意正整數(shù)n滿足an+1﹣an=2,數(shù)列{bn}的前n項(xiàng)和Sn=n2+an .
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)求數(shù)列{
}的前n項(xiàng)和Tn .
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com