已知橢圓
的中心在原點(diǎn),焦點(diǎn)在
軸上,長軸長為
,且點(diǎn)
在橢圓
上.
(1)求橢圓
的方程;
(2)設(shè)
是橢圓
長軸上的一個動點(diǎn),過
作方向向量
的直線
交橢圓
于
、
兩點(diǎn),求證:
為定值.
(1)
;(2)證明見解析.
解析試題分析:(1)已知橢圓的長軸長,就是已知
,那么在橢圓的標(biāo)準(zhǔn)方程中還有一個參數(shù)
,正好橢圓過點(diǎn)
,把這個點(diǎn)的代入橢圓標(biāo)準(zhǔn)方程可求出
,得橢圓方程;(2)這是直線與橢圓相交問題,考查同學(xué)們的計算能力,給定了直線的方向向量,就是給出了直線的斜率,只要設(shè)動點(diǎn)
的坐標(biāo)為
,就能寫出直線
的方程,把它與橢圓方程聯(lián)立方程組,可求出
兩點(diǎn)的坐標(biāo),從而求出
的值,看它與
有沒有關(guān)系(是不是常數(shù)),當(dāng)然在求
時,不一定要把
兩點(diǎn)的坐標(biāo)直接求出(如直接求出,對下面的計算沒有幫助),而是采取設(shè)而不求的思想,即設(shè)
,然后求出
,
,而再把
用
,
表示出來然后代入計算,可使計算過程簡化.
試題解析:(1) 因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/0a/2/y6ryu1.png" style="vertical-align:middle;" />的焦點(diǎn)在
軸上且長軸為
,
故可設(shè)橢圓
的方程為
(
), (1分)
因?yàn)辄c(diǎn)
在橢圓
上,所以
, (2分)
解得
, (1分)
所以,橢圓
的方程為
. (2分)
(2)設(shè)
(
),由已知,直線
的方程是
, (1分)
由![]()
(*) (2分)
設(shè)
,
,則
、
是方程(*)的兩個根,
所以有,![]()
, (1分)
所以,![]()
![]()
![]()
(定值). (3分)
所以,
為定值. (1分)
(寫到倒數(shù)第2行,最后1分可不扣)
考點(diǎn):(1)橢圓的標(biāo)準(zhǔn)方程;(2)直線與橢圓相交問題.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系
中,已知點(diǎn)
,動點(diǎn)
在
軸上的正射影為點(diǎn)
,且滿足直線
.
(Ⅰ)求動點(diǎn)M的軌跡C的方程;
(Ⅱ)當(dāng)
時,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知兩點(diǎn)
,直線AM、BM相交于點(diǎn)M,且這兩條直線的斜率之積為
.
(Ⅰ)求點(diǎn)M的軌跡方程;
(Ⅱ)記點(diǎn)M的軌跡為曲線C,曲線C上在第一象限的點(diǎn)P的橫坐標(biāo)為1,直線PE、PF與圓
(
)相切于點(diǎn)E、F,又PE、PF與曲線C的另一交點(diǎn)分別為Q、R.
求△OQR的面積的最大值(其中點(diǎn)O為坐標(biāo)原點(diǎn)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
橢圓
與雙曲線
有公共的焦點(diǎn),過橢圓E的右頂點(diǎn)作任意直線l,設(shè)直線l交拋物線
于M、N兩點(diǎn),且
.
(1)求橢圓E的方程;
(2)設(shè)P是橢圓E上第一象限內(nèi)的點(diǎn),點(diǎn)P關(guān)于原點(diǎn)O的對稱點(diǎn)為A、關(guān)于x軸的對稱點(diǎn)為Q,線段PQ與x軸相交于點(diǎn)C,點(diǎn)D為CQ的中點(diǎn),若直線AD與橢圓E的另一個交點(diǎn)為B,試判斷直線PA,PB是否相互垂直?并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓
的一個焦點(diǎn)為
,過點(diǎn)
且垂直于長軸的直線被橢圓
截得的弦長為
;
為橢圓
上的四個點(diǎn)。
(Ⅰ)求橢圓
的方程;
(Ⅱ)若
,
且
,求四邊形
的面積的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知點(diǎn)
,
,動點(diǎn)G滿足
.
(Ⅰ)求動點(diǎn)G的軌跡
的方程;
(Ⅱ)已知過點(diǎn)
且與
軸不垂直的直線l交(Ⅰ)中的軌跡
于P,Q兩點(diǎn).在線段
上是否存在點(diǎn)
,使得以MP,MQ為鄰邊的平行四邊形是菱形?若存在,求實(shí)數(shù)m的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓
的兩個焦點(diǎn)為F1,F(xiàn)2,橢圓上一點(diǎn)M![]()
滿足
.
(1)求橢圓的方程;
(2)若直線L:y=
與橢圓恒有不同交點(diǎn)A,B,且
(O為坐標(biāo)原點(diǎn)),求實(shí)數(shù)k的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)橢圓
的左、右頂點(diǎn)分別為
、
,離心率
.過該橢圓上任一點(diǎn)P作PQ⊥x軸,垂足為Q,點(diǎn)C在QP的延長線上,且
.
(1)求橢圓的方程;
(2)求動點(diǎn)C的軌跡E的方程;
(3)設(shè)直線MN過橢圓的右焦點(diǎn)與橢圓相交于M、N兩點(diǎn),且
,求直線MN的方程.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com