【題目】如圖,在四棱錐
中,
.
(1)若
是
的中點(diǎn),求證:
平面
;
(2)若
,求證:平面
平面
.
![]()
【答案】(1)見解析(2)見解析
【解析】試題分析:(1)取
的中點(diǎn)
,利用平幾知識(shí)證明四邊形
是平行四邊形,即得
.最后根據(jù)線面垂直判定定理得
平面
;(2)由平均知識(shí)計(jì)算
,再由
,根據(jù)線面垂直判定定理得
面
,最后根據(jù)面面垂直判定定理得平面
平面
.
試題解析:解(1)取
的中點(diǎn)
,連接
和
,由因?yàn)?/span>
是
的中點(diǎn),
所以
是
的中位線,所以
,
由題意
,所以
,
所以四邊形
是平行四邊形,所以
.因?yàn)?/span>
,所以
平面
;
(2)由題意,在直角梯形
中,經(jīng)計(jì)算可證得
,又
面
,
,
面
,又
面
,所以平面
平面
.
![]()
點(diǎn)睛:垂直、平行關(guān)系證明中應(yīng)用轉(zhuǎn)化與化歸思想的常見類型.
(1)證明線面、面面平行,需轉(zhuǎn)化為證明線線平行.
(2)證明線面垂直,需轉(zhuǎn)化為證明線線垂直.
(3)證明線線垂直,需轉(zhuǎn)化為證明線面垂直.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(
且
,
為自然對(duì)數(shù)的底數(shù)).
(1)若曲線
在點(diǎn)
處的切線斜率為0,且
有極小值,
求實(shí)數(shù)
的取值范圍.
(2)當(dāng)
時(shí),若不等式:
在區(qū)間
內(nèi)恒成立,求實(shí)數(shù)
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)為了解高一年級(jí)學(xué)生身高發(fā)育情況,對(duì)全校700名高一年級(jí)學(xué)生按性別進(jìn)行分層抽樣檢查,測(cè)得身高(單位:
)頻數(shù)分布表如表1、表2.
表1:男生身高頻數(shù)分布表
![]()
表2:女生身高頻數(shù)分布表
![]()
(1)求該校高一女生的人數(shù);
(2)估計(jì)該校學(xué)生身高在
的概率;
(3)以樣本頻率為概率,現(xiàn)從高一年級(jí)的男生和女生中分別選出1人,設(shè)
表示身高在
學(xué)生的人數(shù),求
的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】小華準(zhǔn)備購買一臺(tái)售價(jià)為5000元的電腦,采用分期付款方式,并在一年內(nèi)將款全部付清,商場(chǎng)提出的 付款方式為:購買后二個(gè)月第一次付款,再過二個(gè)月第二次付款…,購買后12個(gè)月第六次付款,每次付
款金額相同,約定月利率為0.8%每月利息按復(fù)利計(jì)算.求小華每期付款的金額是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)是定義在R上的偶函數(shù),對(duì)任意x∈R,都有f(x+4π)=f(x)+f(2π)成立,那么函數(shù)f(x)可能是( )
A.f(x)=2sin
x
B.f(x)=2cos2
x
C.f(x)=2cos2
x
D.f(x)=2cos
x
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,O是坐標(biāo)原點(diǎn),兩定點(diǎn)A,B滿足|
|=|
|=
=2,則點(diǎn)集{P|
=x
+y
,|x|+|y|≤1,x,y∈R}所表示的區(qū)域的面積是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是七位評(píng)委為甲,乙兩名參賽歌手打出的分?jǐn)?shù)的莖葉圖(其中m,n為數(shù)字0~9中的一個(gè)),則甲歌手得分的眾數(shù)和乙歌手得分的中位數(shù)分別為a和b,則一定有( ) ![]()
A.a>b
B.a<b
C.a=b
D.a,b的大小與m,n的值有關(guān)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=cos(ωx+
),(ω>0,0<φ<π),其中x∈R且圖象相鄰兩對(duì)稱軸之間的距離為
;
(1)求f(x)的對(duì)稱軸方程和單調(diào)遞增區(qū)間;
(2)求f(x)的最大值、最小值,并指出f(x)取得最大值、最小值時(shí)所對(duì)應(yīng)的x的集合.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P—ABCD中,平面PAD⊥底面ABCD,其中底面ABCD為等腰梯形,AD∥BC,PA=AB=BC=CD=2,PD=2
,PA⊥PD,Q為PD的中點(diǎn).
![]()
(Ⅰ)證明:CQ∥平面PAB;
(Ⅱ)求直線PD與平面AQC所成角的正弦值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com