【題目】過拋物線
上一點(diǎn)
作直線交拋物線E于另一點(diǎn)N.
(1)若直線MN的斜率為1,求線段
的長.
(2)不過點(diǎn)M的動直線l交拋物線E于A,B兩點(diǎn),且以AB為直徑的圓經(jīng)過點(diǎn)M,問動直線l是否恒過定點(diǎn).如果有求定點(diǎn)坐標(biāo),如果沒有請說明理由.
【答案】(1)
(2)有,定點(diǎn)
.
【解析】
(1)將點(diǎn)
代入拋物線方程求出
,可得拋物線方程,求出直線
的方程,將直線與拋物線聯(lián)立求出交點(diǎn),從而利用兩點(diǎn)間的距離公式即可求解.
(2)設(shè)出直線AB的方程:
,將直線與拋物線聯(lián)立消
,利用
,可得
,設(shè)
,利用韋達(dá)定理,結(jié)合
,利用向量數(shù)量積的坐標(biāo)運(yùn)算整理可得
,從而可得
,代入直線方程即可求解.
(1)把
代入
中,得![]()
直線
的方程:
,
即:
與
聯(lián)立
得:
,
∴
,
;∴![]()
∴
.
(2)設(shè)直線AB的方程為:
與
聯(lián)立,
得:
,
設(shè)
,
,即![]()
,![]()
∵
,∴![]()
∴![]()
整理得:![]()
代入得:![]()
即![]()
∴
(舍去),
(符合
)
∴直線![]()
∴![]()
即動直線AB經(jīng)過定點(diǎn)
.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】過雙曲線C:
1(a>0,b>0)右焦點(diǎn)F2作雙曲線一條漸近線的垂線,垂足為P,與雙曲線交于點(diǎn)A,若
,則雙曲線C的漸近線方程為( )
A.y=±
xB.y=±xC.y=±2xD.y=±
x
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,A、B兩地相距100公里,兩地政府為提升城市的抗疫能力,決定在A、B之間選址P點(diǎn)建造儲備倉庫,共享民生物資,當(dāng)點(diǎn)P在線段AB的中點(diǎn)C時,建造費(fèi)用為2000萬元,若點(diǎn)P在線段AC上(不含點(diǎn)A),則建造費(fèi)用與P、A之間的距離成反比,若點(diǎn)P在線段CB上(不含點(diǎn)B),則建造費(fèi)用與P、B之間的距離成反比,現(xiàn)假設(shè)P、A之間的距離為x千米
,A地所需該物資每年的運(yùn)輸費(fèi)用為
萬元,B地所需該物資每年的運(yùn)輸費(fèi)用為
萬元,
表示建造倉庫費(fèi)用,
表示兩地物資每年的運(yùn)輸總費(fèi)用(單位:萬元).
![]()
(1)求函數(shù)
的解析式;
(2)若規(guī)劃倉庫使用的年限為
,
,求
的最小值,并解釋其實(shí)際意義.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠為提高生產(chǎn)效率,需引進(jìn)一條新的生產(chǎn)線投入生產(chǎn),現(xiàn)有兩條生產(chǎn)線可供選擇,生產(chǎn)線①:有A,B兩道獨(dú)立運(yùn)行的生產(chǎn)工序,且兩道工序出現(xiàn)故障的概率依次是0.02,0.03.若兩道工序都沒有出現(xiàn)故障,則生產(chǎn)成本為15萬元;若A工序出現(xiàn)故障,則生產(chǎn)成本增加2萬元;若B工序出現(xiàn)故障,則生產(chǎn)成本增加3萬元;若A,B兩道工序都出現(xiàn)故障,則生產(chǎn)成本增加5萬元.生產(chǎn)線②:有a,b兩道獨(dú)立運(yùn)行的生產(chǎn)工序,且兩道工序出現(xiàn)故障的概率依次是0.04,0.01.若兩道工序都沒有出現(xiàn)故障,則生產(chǎn)成本為14萬元;若a工序出現(xiàn)故障,則生產(chǎn)成本增加8萬元;若b工序出現(xiàn)故障,則生產(chǎn)成本增加5萬元;若a,b兩道工序都出現(xiàn)故障,則生產(chǎn)成本增加13萬元.
(1)若選擇生產(chǎn)線①,求生產(chǎn)成本恰好為18萬元的概率;
(2)為最大限度節(jié)約生產(chǎn)成本,你會給工廠建議選擇哪條生產(chǎn)線?請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(1)討論
的導(dǎo)函數(shù)
零點(diǎn)的個數(shù);
(2)若
的最小值為
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知角
始邊與
軸的非負(fù)半軸重合,與圓
相交于點(diǎn)
,終邊與圓
相交于點(diǎn)
,點(diǎn)
在
軸上的射影為
,
的面積為
,函數(shù)
的圖象大致是( )
A.
B. ![]()
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)
是各項(xiàng)均為正數(shù)的等差數(shù)列,
,
是
和
的等比中項(xiàng),
的前
項(xiàng)和為
,
.
(1)求
和
的通項(xiàng)公式;
(2)設(shè)數(shù)列
的通項(xiàng)公式
.
(i)求數(shù)列
的前
項(xiàng)和
;
(ii)求
.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com