分析 本題通過換元法將原函數(shù)轉(zhuǎn)化為二次函數(shù),然后結(jié)合二次函數(shù)的特點進(jìn)行分類解題.即△=(-m)2-4(m+1)<0或$\left\{\begin{array}{l}{△≥0}\\{\frac{m}{2}<1}\\{1-m+1+m>0}\end{array}\right.$,都滿足題意.
解答 解:令t=3x,則問題轉(zhuǎn)化為函數(shù)f(t)=t2-mt+m+1對t∈(1,+∞)的圖象恒在x軸的上方
即△=(-m)2-4(m+1)<0或$\left\{\begin{array}{l}{△≥0}\\{\frac{m}{2}<1}\\{1-m+1+m>0}\end{array}\right.$,
解得m<2+2$\sqrt{2}$.
故答案為m<2+2$\sqrt{2}$.
點評 本題考查了指數(shù)函數(shù)的圖象與性質(zhì),二次函數(shù)的性質(zhì),還有通過換元法將原函數(shù)轉(zhuǎn)化為二次函數(shù),屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 向左平移$\frac{π}{3}$個單位 | B. | 向右平移$\frac{π}{3}$個單位 | ||
| C. | 向左平移$\frac{2π}{3}$個單位 | D. | 向右平移$\frac{2π}{3}$個單位 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | ($\sqrt{x}$)′=$\frac{1}{2\sqrt{x}}$ | B. | ($\frac{1}{x}$)′=-$\frac{1}{{x}^{2}}$ | C. | (lnx)′=$\frac{1}{x}$ | D. | (e-x)′=e-x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{{5\sqrt{3}}}{6}$ | B. | $\frac{{7\sqrt{3}}}{6}$ | C. | $\frac{{\sqrt{3}}}{6}$ | D. | $\frac{{3\sqrt{3}}}{6}$ |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com