【題目】已知數(shù)列
的各項排成如圖所示的三角形數(shù)陣,數(shù)陣中每一行的第一個數(shù)
構(gòu)成等差數(shù)列
,
是
的前
項和,且
,
.
![]()
(1)若數(shù)陣中從第3行開始每行中的數(shù)按從左到右的順序均構(gòu)成公比為正數(shù)的等比數(shù)列,且公比相等,已知
,求
的值;
(2)設(shè)
,當(dāng)
時,對任意
,不等式
恒成立,求
的取值范圍.
【答案】(1)160;(2)
或
.
【解析】
試題(I)由等差數(shù)列{bn}滿足b1=a1=1,S5=15.求出數(shù)列的公差后,可得數(shù)列的通項公式,結(jié)合數(shù)陣中從第三行開始每行中的數(shù)按從左到右的順序均構(gòu)成公比為正數(shù)的等比數(shù)列,且公比相等,a9=16,可求出公比,進而求出a50的值;
(Ⅱ)由(1)求出Sn的表達式,利用裂項相消法求出Tn的表達式,進而將不等式恒成立問題,轉(zhuǎn)化為最值問題,利用導(dǎo)數(shù)法,可得答案.
試題解析:
(1)設(shè)等差數(shù)列
的公差為
,∵
,
,
∴
,
.
∴
,
設(shè)從第3行起,每行的公比都是
,且
,
,
,
.
,故
是數(shù)陣中第10行的第5個數(shù).
故
.
(2)∵
,
∴![]()
![]()
![]()
;
令
,
則![]()
當(dāng)
時,
,
在
上為減函數(shù),
∴
為遞減數(shù)列,
的最大值為
.
∴不等式變?yōu)?/span>
恒成立,設(shè)
,
,
則
,即
,解得
或
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)![]()
(Ⅰ)求函數(shù)
的圖像在點
處的切線方程.
(Ⅱ)若
且
對任意
恒成立,求
的最大值;
(Ⅲ)當(dāng)
時,證明:![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列
的前
項和為
,滿足
,
,數(shù)列
滿足
,
,且
.
(1)求數(shù)列
的通項公式;
(2)求證:數(shù)列
是等差數(shù)列,求數(shù)列
的通項公式;
(3)若
,數(shù)列
的前
項和為
,對任意的
,都有
,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對甲、乙兩名自行車賽手在相同條件下進行了6次測試,測得他們的最大速度(單位:m/s)的數(shù)據(jù)如下:
甲 | 27 | 38 | 30 | 37 | 35 | 31 |
乙 | 33 | 29 | 38 | 34 | 28 | 36 |
(1)畫出莖葉圖,由莖葉圖你能獲得哪些信息?
(2)分別求出甲、乙兩名自行車賽手最大速度(m/s)數(shù)據(jù)的平均數(shù)、極差、方差,并判斷選誰參加比賽比較合適?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,橢圓
的左、右焦點為
,右頂點為
,上頂點為
,若
,
與
軸垂直,且
.
(1)求橢圓方程;
(2)過點
且不垂直于坐標(biāo)軸的直線與橢圓交于
兩點,已知點
,當(dāng)
時,求滿足
的直線
的斜率
的取值范圍.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知多面體
的直觀圖(圖1)和它的三視圖(圖2),
![]()
(1)在棱
上是否存在點
,使得
平面
?若存在,求
的值,并證明你的結(jié)論;若不存在,說明理由;
(2)求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】微信是現(xiàn)代生活中進行信息交流的重要工具.據(jù)統(tǒng)計,某公司200名員工中
的人使用微信,其中每天使用微信時間少于一小時的有60人,其余的員工每天使用微信時間不少于一小時,若將員工分成青年(年齡小于40歲)和中年(年齡不小于40歲)兩個階段,那么使用微信的人中
是青年人.若規(guī)定:每天使用微信時間不少于一小時為經(jīng)常使用微信,那么經(jīng)常使用微信的員工中
都是青年人.
(1)若要調(diào)查該公司使用微信的員工經(jīng)常使用微信與年齡的關(guān)系,完成
列聯(lián)表:
青年人 | 中年人 | 合計 | |
經(jīng)常使用微信 | |||
不經(jīng)常使用微信 | |||
合計 |
(2)由列聯(lián)表中所得數(shù)據(jù)判斷,能否在犯錯誤的概率不超過
的前提下認(rèn)為“經(jīng)常使用微信與年齡有關(guān)”?
| 0.010 | 0.001 |
| 6.635 | 10.828 |
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)生產(chǎn)甲、乙兩種產(chǎn)品,已知生產(chǎn)每噸甲產(chǎn)品要用A原料3噸,B原料2噸;生產(chǎn)每噸乙產(chǎn)品要用A原料1噸,B原料3噸.銷售每噸甲產(chǎn)品可獲得利潤5萬元,每噸乙產(chǎn)品可獲得利潤3萬元.該企業(yè)在一個生產(chǎn)周期內(nèi)消耗A原料不超過13噸,B原料不超過18噸.
(1)列出甲、乙兩種產(chǎn)品滿足的關(guān)系式,并畫出相應(yīng)的平面區(qū)域;
(2)在一個生產(chǎn)周期內(nèi)該企業(yè)生產(chǎn)甲、乙兩種產(chǎn)品各多少噸時可獲得利潤最大,最大利潤是多少?
(用線性規(guī)劃求解要畫出規(guī)范的圖形及具體的解答過程)
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com