分析 (Ⅰ)利用等差數(shù)列、等比數(shù)列的通項(xiàng)公式先求得公差和公比,即可求數(shù)列的通項(xiàng)公式;
(Ⅱ)利用分組求和的方法求解數(shù)列的和,由等差數(shù)列及等比數(shù)列的前n項(xiàng)和公式即可求解數(shù)列的和.
解答 解:(I)因?yàn)樵跀?shù)列{an}中,a1=1,an+1=2an
所以,$\frac{{a}_{n+1}}{{a}_{n}}$=2,n∈N*,
即數(shù)列{an}是以首項(xiàng)為1,公比為2的等比數(shù)列.
所以an=2n-1
設(shè)等差數(shù)列{an+bn}的公差為d,
由題意得:3d=(a4+b4)-(a1+b1 )=(23+11)-(1+3)=15
解得d=5,
∴an+bn=4+5(n-1)=5n-1,
∴bn=5n-1-2n-1,
(II) 由(I)知bn=5n-1-2n-1,
數(shù)列{5n-1}的前n項(xiàng)和為4n+$\frac{5n(n-1)}{2}$=$\frac{5}{2}$n2+$\frac{3}{2}$n.
數(shù)列{2n-1}的前n項(xiàng)和為$\frac{1×(1-{2}^{n})}{1-2}$=2n-1,
所以,數(shù)列{bn}的前n項(xiàng)和$\frac{5}{2}$n2+$\frac{3}{2}$n-2n+1.
點(diǎn)評 本題考查了等差數(shù)列、等比數(shù)列的通項(xiàng)公式,考查了利用分組求和的方法求解數(shù)列的前n項(xiàng)和,是中檔題.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | a | B. | b | C. | $\sqrt{ab}$ | D. | $\frac{a+b}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
| 除夕18時PM2.5濃度 | 初一2時PM2.5濃度 | |
| 北京 | 75 | 647 |
| 天津 | 66 | 400 |
| 石家莊 | 89 | 375 |
| 廊坊 | 102 | 399 |
| 太原 | 46 | 115 |
| 上海 | 16 | 17 |
| 南京 | 35 | 44 |
| 杭州 | 131 | 39 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | (-1,1) | B. | (-1,1] | C. | [1,2] | D. | [1,2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com