如圖,在直三棱柱
中,
分別是
的中點,且
.
(1)求證:
平面
;
(2)求證:平面
平面
.
![]()
(1)略 (2)略
【解析】本試題主要是考查了線面平行的判定和面面垂直的判定的綜合運用。
(1)利用線面平行的判定定理,只要得到線線平行即可。
(2)對于面面垂直的判定,自然要通過線面垂直來判定面面垂直,或者建立空間直角坐標系,利用法向量與法向量的垂直來判定。
解:(1)連結(jié)AG, 交BE于點M, 連結(jié)FM ……………2分
![]()
∵E, G分別為棱的中點
∴四邊形ABGE為平行四邊形,
∴點M為BE的中點, ……………4分
而點F為AC的中點,∴FM∥CG
∵
面BEF,
面BEF, ∴
;………7分
(2因為三棱柱
是直三棱柱,,
∴A1C1⊥面BC1,而CG
面BC1∴A1C1⊥CG,
………….………10分
又∵
,∴CG⊥面A1C1G由(1)知,F(xiàn)M∥CG∴FM⊥面A1C1G, ………12分
而
面BEF, ∴平面
平面![]()
科目:高中數(shù)學 來源: 題型:
| 2 |
查看答案和解析>>
科目:高中數(shù)學 來源:2013屆廣東省高二下期中理科數(shù)學試卷(解析版) 題型:解答題
如圖,在直三棱柱
中, AB=1,
,
∠ABC=60
.
(1)證明:
;
(2)求二面角A—
—B的正切值。
![]()
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年天津市高三第二次月考文科數(shù)學 題型:解答題
(本小題滿分13分)如圖,在直三棱柱
中,
,
分別為
的中點,四邊形
是邊長為
的正方形.
(Ⅰ)求證:
平面
;
(Ⅱ)求證:
平面
;
(Ⅲ)求二面角
的余弦值.
![]()
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年四川省高三2月月考理科數(shù)學 題型:解答題
如圖,在直三棱柱
中,
,
,
是
的中點.
(Ⅰ)求證:
∥平面
;
(Ⅱ)求二面角
的余弦值;
(Ⅲ)試問線段
上是否存在點
,使
與
成
角?若存在,確定
點位置,若不存在,說明理由.
![]()
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com