【題目】已知函數(shù)f(x)=x2﹣2|x|﹣3a
(1)當(dāng)a=1時(shí),在所給坐標(biāo)系中,畫出函數(shù)f(x)的圖象,并求f(x)的單調(diào)遞增區(qū)間
(2)若直線y=1與函數(shù)f(x)的圖象有4個(gè)交點(diǎn),求a的取值范圍.
【答案】
(1)解:a=1時(shí):f(x)=x2﹣2|x|﹣3,
∴f(x)= ![]()
畫出函數(shù)的圖象,如圖示:
,
∴f(x)的遞增區(qū)間是[﹣1,0]和[1,+∞)
(2)解:由
得:﹣3a﹣1<1<﹣3a,
解得:﹣
<a<﹣ ![]()
【解析】(1)將a=1的值代入f(x)的表達(dá)式,畫出函數(shù)的圖象,讀出單調(diào)區(qū)間即可;(2)問(wèn)題掌握解關(guān)于a的不等式組,解出即可.
【考點(diǎn)精析】利用二次函數(shù)的性質(zhì)對(duì)題目進(jìn)行判斷即可得到答案,需要熟知當(dāng)
時(shí),拋物線開口向上,函數(shù)在
上遞減,在
上遞增;當(dāng)
時(shí),拋物線開口向下,函數(shù)在
上遞增,在
上遞減.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】偶函數(shù)f(x)滿足f(1﹣x)=f(1+x),且在x∈[0,1]時(shí),f(x)=
,若直線kx﹣y+k=0(k>0)與函數(shù)f(x)的圖象有且僅有三個(gè)交點(diǎn),則k的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】“累計(jì)凈化量(CCM)”是空氣凈化器質(zhì)量的一個(gè)重要衡量指標(biāo),它是指空氣凈化器從開始使用到凈化效率為
時(shí)對(duì)顆粒物的累計(jì)凈化量(單位:克).根據(jù)國(guó)家標(biāo)準(zhǔn),對(duì)空氣凈化器的累計(jì)凈化量(CCM)有如下等級(jí)劃分:
累計(jì)凈化量(克) |
|
|
| 12以上 |
等級(jí) |
|
|
|
|
已知某批空氣凈化器共
臺(tái),其累計(jì)凈化量都分布在區(qū)間
內(nèi),為了解其質(zhì)量,隨機(jī)抽取了
臺(tái)凈化器作為樣本進(jìn)行估計(jì),按照
,
,
,
,
均勻分組,其中累計(jì)凈化量在
的所有數(shù)據(jù)有:
,
,
,
,
和
,并繪制了如下頻率分布直方圖.
![]()
(1)求
的值及頻率分布直方圖中
的值;
(2)以樣本估計(jì)總體,試估計(jì)這批空氣凈化器(共2000臺(tái))中等級(jí)為
的空氣凈化器有多少臺(tái)?
(3)從累計(jì)凈化量在
的樣本中隨機(jī)抽取2臺(tái),求恰好有1臺(tái)等級(jí)為
的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=
x3﹣2ax2+3x(x∈R).
(1)若a=1,點(diǎn)P為曲線y=f(x)上的一個(gè)動(dòng)點(diǎn),求以點(diǎn)P為切點(diǎn)的切線斜率取最小值時(shí)的切線方程;
(2)若函數(shù)y=f(x)在(0,+∞)上為單調(diào)增函數(shù),試求滿足條件的最大整數(shù)a.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若函數(shù)f(x)=x2﹣2ax+3為定義在[﹣2,2]上的函數(shù).
(1)當(dāng)a=1時(shí),求f(x)的最大值與最小值;
(2)若f(x)的最大值為M,最小值為m,函數(shù)g(a)=M﹣m,求g(a)的解析式,并求其最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) ![]()
(1)當(dāng)a=2時(shí),求f(x)在x∈[0,1]的最大值;
(2)當(dāng)0<a<1,f(x)在x∈[0,1]上的最大值和最小值之和為a,求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知多面體
中,四邊形
為平行四邊形,
,且
,
,
,
.
![]()
(1)求證:平面
平面
;
(2)若
,直線
與平面
夾角的正弦值為
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若二次函數(shù)
的圖象和直線
無(wú)交點(diǎn),現(xiàn)有下列結(jié)論:
①方程
一定沒(méi)有實(shí)數(shù)根;②若
,則不等式
對(duì)一切實(shí)數(shù)
都成立;
③若
,則必存在實(shí)數(shù)
,使
;④若
,則不等式
對(duì)一切實(shí)數(shù)都成立;⑤函數(shù)
的圖象與直線
也一定沒(méi)有交點(diǎn),其中正確的結(jié)論是__________.(寫出所有正確結(jié)論的編號(hào))
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com