欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

定義域?yàn)镽的偶函數(shù)f(x),當(dāng)x>0時,f(x)=lnx-ax(a∈R),方程f(x)=0在R上恰有5個不同的實(shí)數(shù)解.
(1)求x<0時,函數(shù)f(x)的解析式;
(2)求實(shí)數(shù)a的取值范圍.
【答案】分析:(1)設(shè)x<0,則-x>0,然后代入函數(shù)的解析式,根據(jù)偶函數(shù)進(jìn)行化簡即可求出x<0時,函數(shù)f(x)的解析式;
(2)根據(jù)f(x)為偶函數(shù),則f(x)=0的根關(guān)于原點(diǎn)對稱,由f(x)=0恰有5個不同的實(shí)數(shù)解知5個實(shí)根中有兩個正根,二個負(fù)根,一個零根,且兩個正根和二個負(fù)根互為相反數(shù),從而原命題等價與當(dāng)x>0時f(x)圖象與x軸恰有兩個不同的交點(diǎn),即y=lnx與直線y=ax交點(diǎn)的個數(shù),由幾何意義知y=lnx與直線y=ax交點(diǎn)的個數(shù)為2時,直線y=ax的變化應(yīng)是從x軸到與y=lnx相切之間的情形,從而求出實(shí)數(shù)a的取值范圍.
解答:解:(1)設(shè)x<0,則-x>0.
∵f(x)為偶函數(shù),∴f(x)=f(-x)=ln(-x)+ax.
(2)∵f(x)為偶函數(shù),∴f(x)=0的根關(guān)于原點(diǎn)對稱.
由f(x)=0恰有5個不同的實(shí)數(shù)解知5個實(shí)根中有兩個正根,二個負(fù)根,一個零根.
且兩個正根和二個負(fù)根互為相反數(shù).∴原命題?當(dāng)x>0時f(x)圖象與x軸恰有兩個不同的交點(diǎn).
下面研究x>0時的情況:f(x)=0的零點(diǎn)個數(shù)?y=lnx與直線y=ax交點(diǎn)的個數(shù).
∴當(dāng)a≤0時,y=lnx遞增與直線y=ax下降或與x軸重合,
故交點(diǎn)的個數(shù)為1,不合題意,∴a>0.
由幾何意義知y=lnx與直線y=ax交點(diǎn)的個數(shù)為2時,直線y=ax的變化應(yīng)是從x軸到與y=lnx相切之間的情形. 
設(shè)切點(diǎn),
∴切線方程為:
由切線與y=ax重合知,
故實(shí)數(shù)a的取值范圍為
點(diǎn)評:本題主要考查了函數(shù)的解析式,以及函數(shù)與方程和根的存在性和根的個數(shù)的判斷,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知定義域?yàn)镽的偶函數(shù)f(x)在[0,+∞)上是增函數(shù),且f(
1
2
)=0
,則不等式f(log4x)>0的解集是
(  )
A、x|x>2
B、{x|0<x<
1
2
}
C、{x|0<x<
1
2
或x>2}
D、{x|
1
2
<x<1或x>2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義域?yàn)镽的偶函數(shù)f(x)滿足對?∈R,有f(x+2)=f(x)-f(1),且當(dāng)x∈[2,3]時,f(x)=-2x2+12x-18,若方程f(x)=loga(x+1)在(0,+∞)上恰有三個不同的根,則a的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•鷹潭一模)定義域?yàn)镽的偶函數(shù)f(x)滿足對?x∈R,有f(x+2)=f(x)-f(1),且當(dāng)x∈[2,3]時,f(x)=-2x2+12x-18,若函數(shù)y=f(x)-loga(|x|+1)在(0,+∞)上至多三個零點(diǎn),則a的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義域?yàn)镽的偶函數(shù)f(x)在(0,+∞)上是增函數(shù),且f(
1
2
)=0,則不等式f(log2x)>0的解是
(0,
2
2
)∪(
2
,+∞)
(0,
2
2
)∪(
2
,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•順義區(qū)一模)已知定義域?yàn)镽的偶函數(shù)f(x)在(-∞,0]上是減函數(shù),且f(
12
)=2,則不等式f(2x)>2的解集為
(-1,+∞)
(-1,+∞)

查看答案和解析>>

同步練習(xí)冊答案