分析 由已知得f(-3)=$\frac{1}{5-(-3)}$=$\frac{1}{8}$,從而f[f(-3)]=f($\frac{1}{8}$),由此能求出結(jié)果.
解答 解:∵函數(shù)f(x)=$\left\{\begin{array}{l}{\frac{1}{5-x},x≤0}\\{lo{g}_{4}x,x>0}\end{array}\right.$,
∴f(-3)=$\frac{1}{5-(-3)}$=$\frac{1}{8}$,
f[f(-3)]=f($\frac{1}{8}$)=$lo{{g}_{4}\frac{1}{8}}^{\;}$=$\frac{lg\frac{1}{8}}{lg4}$=$\frac{-3lg2}{2lg2}$=-$\frac{3}{2}$.
故答案為:$-\frac{3}{2}$.
點評 本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意函數(shù)性質(zhì)的合理運用.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{3}{10}$ | B. | $\frac{\sqrt{10}}{10}$ | C. | $\frac{\sqrt{5}}{5}$ | D. | $\frac{3\sqrt{10}}{10}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | {0} | B. | {2} | C. | {0,2} | D. | {0,1,2} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | p真,q真 | B. | p假,q真 | C. | p真,q假 | D. | p假,q假 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 函數(shù)f(x)的最小正周期是$\frac{12}{5}$ | |
| B. | 函數(shù)g(x)=$\frac{{2\sqrt{3}}}{3}sin\frac{5π}{6}$x的圖象可由函數(shù)f(x)的圖象向右平移$\frac{2}{5}$個單位得到 | |
| C. | 函數(shù)f(x)圖象的一個對稱中心是(-$\frac{4}{5}$,0) | |
| D. | 函數(shù)f(x)的一個遞減區(qū)間是(5,$\frac{31}{5}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{2π}{3}$ | D. | $\frac{5π}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{\sqrt{10}}{5}$ | B. | $\sqrt{3}$+1 | C. | $\frac{\sqrt{10}}{2}$ | D. | $\sqrt{5}$+1 |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com