已知拋物線頂點(diǎn)在原點(diǎn),焦點(diǎn)在x軸上,又知此拋物線上一點(diǎn)A(4,m)到焦點(diǎn)的距離為6.
(1)求此拋物線的方程;
(2)若此拋物線方程與直線
相交于不同的兩點(diǎn)A、B,且AB中點(diǎn)橫坐標(biāo)為2,求k的值.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)拋物線
,
為焦點(diǎn),
為準(zhǔn)線,準(zhǔn)線與
軸交點(diǎn)為![]()
(1)求
;
(2)過點(diǎn)
的直線與拋物線
交于
兩點(diǎn),直線
與拋物線交于點(diǎn)
.
①設(shè)
三點(diǎn)的橫坐標(biāo)分別為
,計(jì)算:
及
的值;
②若直線
與拋物線交于點(diǎn)
,求證:
三點(diǎn)共線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
設(shè)點(diǎn)
到直線
的距離與它到定點(diǎn)
的距離之比為
,并記點(diǎn)
的軌跡為曲線
.
(Ⅰ)求曲線
的方程;
(Ⅱ)設(shè)
,過點(diǎn)
的直線
與曲線
相交于
兩點(diǎn),當(dāng)線段
的中點(diǎn)落在由四點(diǎn)
構(gòu)成的四邊形內(nèi)(包括邊界)時(shí),求直線
斜率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)已知橢圓
:
(
)的離心率為
,過右焦點(diǎn)
且斜率為1的直線交橢圓
于
兩點(diǎn),
為弦
的中點(diǎn)。
(1)求直線
(
為坐標(biāo)原點(diǎn))的斜率
;
(2)設(shè)
橢圓
上任意一點(diǎn),且
,求
的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在直角坐標(biāo)系
中,點(diǎn)
,點(diǎn)
為拋物線
的焦點(diǎn),
線段
恰被拋物線
平分.
(Ⅰ)求
的值;
(Ⅱ)過點(diǎn)
作直線
交拋物線
于
兩點(diǎn),設(shè)直線
、
、
的斜率分別為
、
、
,問
能否成公差不為零的等差數(shù)列?若能,求直線
的方程;若不能,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分,(Ⅰ)小問3分,(Ⅱ)小問9分.)
直線
稱為橢圓
的“特征直線”,若橢圓的離心率
.(1)求橢圓的“特征直線”方程;
(2)過橢圓C上一點(diǎn)
作圓
的切線,切點(diǎn)為P、Q,直線PQ與橢圓的“特征直線”相交于點(diǎn)E、F,O為坐標(biāo)原點(diǎn),若
取值范圍恰為
,求橢圓C的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓
(
)過點(diǎn)
(0,2),離心率
.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)過定點(diǎn)
(2,0)的直線
與橢圓相交于
兩點(diǎn),且
為銳角(其中
為坐標(biāo)原點(diǎn)),求直線
斜率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)設(shè)直線
與橢圓
相交于
兩個(gè)不同的點(diǎn),與
軸相交于點(diǎn)
,記
為坐標(biāo)原點(diǎn).
(1)證明:![]()
(2)若
且
的面積及橢圓方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知焦點(diǎn)在
軸上的橢圓
過點(diǎn)
,且離心率為
,
為橢圓
的左頂點(diǎn).
(1)求橢圓
的標(biāo)準(zhǔn)方程;
(2)已知過點(diǎn)
的直線
與橢圓
交于
,
兩點(diǎn).
① 若直線
垂直于
軸,求
的大小;
② 若直線
與
軸不垂直,是否存在直線
使得
為等腰三角形?如果存在,求出直線
的方程;如果不存在,請說明理由.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com