我們把平面內(nèi)與直線垂直的非零向量稱為直線的法向量,在平面直角坐標(biāo)系中,利用求動(dòng)點(diǎn)軌跡方程的方法,可以求出過點(diǎn)A(-3,4),且法向量為
=(1,-2)的直線(點(diǎn)法式)方程為:1×(x+3)+(-2)×(y-4)=0,化簡得x-2y+11=0。類比以上方法,在空間直角坐標(biāo)系中,經(jīng)過點(diǎn)A(1,2,3),且法向量為
=(-1,-2,1)的平面的方程為 。
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
用火柴棒擺“金魚”,如圖所示:B![]()
按照上面的規(guī)律,第4個(gè)“金魚”圖需要火柴棒的根數(shù)為 ( )
A.24 B.26 C.28 D.30
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
設(shè)各項(xiàng)均為正數(shù)的數(shù)列
的前n項(xiàng)和為
,已知
,且![]()
對(duì)一切
都成立.
(1)若
,求數(shù)列
的通項(xiàng)公式;
(2)求
的值,使數(shù)列
是等差數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
對(duì)兩個(gè)變量y和x進(jìn)行回歸分析,得到一組樣本數(shù)據(jù):(x1,y1),(x2,y2),…,(xn,yn),則下列說法中不正確的是( )
A.由樣本數(shù)據(jù)得到的回歸方程
=bx+a必過樣本中心(
,
)
B.殘差平方和越小的模型,擬合的效果越好
C.用相關(guān)指數(shù)R2來刻畫回歸效果,R2越小,說明模型的擬合效果越好
D.若變量y和x之間的相關(guān)系數(shù)為r=-0.9362,則變量y和x之間具有線性相關(guān)關(guān)系
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
為考察某種甲型H1N1疫苗的效果,進(jìn)行動(dòng)物實(shí)驗(yàn),得到如下疫苗效果的實(shí)驗(yàn)列聯(lián)表:
| 感染 | 未感染 | 合計(jì) | |
| 沒服用 | 30 | ||
| 服用 | 10 | ||
| 合計(jì) | 100 |
設(shè)從沒服用疫苗的動(dòng)物中任取1只,感染數(shù)為
;
(1)若
,請(qǐng)將上面的
列聯(lián)表補(bǔ)充完整;
(2)能夠以95%的把握認(rèn)為這種甲型H1N1疫苗有效嗎?并說明理由.
參考公式:K2=
,其中n=a+b+c+d。
參考數(shù)據(jù):
| P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 |
| k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
如圖,已知圓
,經(jīng)過橢圓
的右焦點(diǎn)F
及上頂點(diǎn)B,過圓外一點(diǎn)
傾斜角為
的直線
交橢圓于C,D兩點(diǎn),
(Ⅰ)求橢圓的方程;
(Ⅱ)若右焦點(diǎn)F在以線段CD為直徑的圓E的外部,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
在數(shù)列
中,
(
為常數(shù),
)且
成公比不等于1的等比數(shù)列.
(Ⅰ) 求
的值;
(Ⅱ) 設(shè)
,求數(shù)列
的前
項(xiàng)和
.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com