已知二次函數(shù)
滿足以下兩個條件:
①不等式
的解集是(-2,0) ②函數(shù)
在![]()
上的最小值是3
(Ⅰ)求
的解析式;
(Ⅱ)若點(diǎn)![]()
在函數(shù)
的圖象上,且![]()
(。┣笞C:數(shù)列
為等比數(shù)列
(ⅱ)令
,是否存在整數(shù)
使得數(shù)列
取到最小值?若有,請求出
的值;沒有,請說明理由。
解:(Ⅰ)∵ f(x)< 0 的解集為(-2,0),且f(x)是二次函數(shù)
∴ 可設(shè) f(x)= a x(x + 2) (a > 0),故 f(x)的對稱軸為直線
,
∴ f(x)在 [1,2]上的最小值為f(1)=3a =3 ,
∴ a = 1 ,所以f(x)= x 2 + 2 x .
(Ⅱ)(。 點(diǎn)(a n , a n + 1 )在函數(shù)f(x)= x 2 + 2 x 的圖象上
∴ a n + 1 = a n 2 + 2 a n , 則 1 + a n + 1 = 1 + a n 2 + 2 a n = (1 + a n)2
∴
, 又首項(xiàng) ![]()
∴ 數(shù)列
為等比數(shù)列,且公比為2 。
(ⅱ)由上題可知
,
,
![]()
時,有
,
時,有![]()
故只須比較
與
,而
,所以當(dāng)
時,數(shù)列
取到最小值。
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
| 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
| 1 | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:陜西省2009屆高三教學(xué)質(zhì)量檢測模擬試題(一)、數(shù)學(xué) 題型:044
已知二次函數(shù)滿足以下條件:
①圖像關(guān)于直線x=
對稱;②f(1)=0;③其圖像可由y=x2-1平移得到.
(Ⅰ)求y=f(x)表達(dá)式;
(Ⅱ)若數(shù)列{an},{bn}對任意的實(shí)數(shù)x都滿足f(x)·g(x)+anx+bn=xn+1(n∈N*),其中g(shù)(x)是定義在實(shí)數(shù)集R上的一個函數(shù),求數(shù)列{an},{bn}的通項(xiàng)公式.
(Ⅲ)設(shè)圓Cn:(x-an)2+(y-bn)2=
,(n∈N*),若圓Cn與圓Cn+1外切,且{rn}是各項(xiàng)都為正數(shù)的等比數(shù)列,求數(shù)列{rn}的公比q的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆福建省高二上學(xué)期期中考試文科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分14分)
已知二次函數(shù)
滿足以下兩個條件:
①不等式
的解集是(-2,0) ②函數(shù)
在![]()
上的最小值是3
(Ⅰ)求
的解析式;
(Ⅱ)若點(diǎn)![]()
在函數(shù)
的圖象上,且![]()
(。┣笞C:數(shù)列
為等比數(shù)列
(ⅱ)令
,是否存在正實(shí)數(shù)
,使不等式
對于一切的
恒成立?若存在,指出
的取值范圍;若不存在,請說明理由.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com