| A. | $({0,\frac{1}{10}})$ | B. | (10,+∞) | C. | $({\frac{1}{10},10})$ | D. | $({0,\frac{1}{10}})∪({10,+∞})$ |
分析 構(gòu)造函數(shù)g(x)=f(x)-x,求函數(shù)的導(dǎo)數(shù),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,求出不等式f(x)<x的解為x>1,即可得到結(jié)論.
解答 解:設(shè)g(x)=f(x)-x,
則函數(shù)的導(dǎo)數(shù)g′(x)=f′(x)-1,
∵f′(x)<1,
∴g′(x)<0,
即函數(shù)g(x)為減函數(shù),
∵f(1)=1,
∴g(1)=f(1)-1=1-1=0,
則不等式g(x)<0等價為g(x)<g(1),
則不等式的解為x>1,
即f(x)<x的解為x>1,
∵f(1g2x)<1g2x,
∴由1g2x>1得1gx>1或lgx<-1,
解得x>10或0<x<$\frac{1}{10}$,
故不等式的解集為$({0,\frac{1}{10}})∪({10,+∞})$,
故選:D
點評 本題主要考查不等式的求解,構(gòu)造函數(shù),求函數(shù)的導(dǎo)數(shù),利用函數(shù)單調(diào)性和導(dǎo)數(shù)之間的關(guān)系是解決本題的關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | (5n-1)2 | B. | 52n-1 | C. | $\frac{2}{3}$(52n+1+1) | D. | $\frac{2}{3}$(52n-1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
| 常喝 | 不常喝 | 合計 | |
| 肥胖 | 2 | ||
| 不肥胖 | 18 | ||
| 合計 | 30 |
| P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| K | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{3}{2}$ | B. | 2 | C. | $\frac{5}{2}$ | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | (-∞,$\frac{3}{2}$] | B. | (-∞,$\frac{3}{2}$) | C. | [$\frac{3}{2}$,+∞) | D. | ($\frac{3}{2}$,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | {x|-2<x<1} | B. | {x|x<-2或x≥3} | C. | {x|-2<x≤1} | D. | {x|-2<x<3且x≠1} |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com