如圖,將邊長(zhǎng)為2的正方形ABCD沿對(duì)角線(xiàn)BD折疊,使的平面ABD⊥平面CBD,AE⊥平面ABD,且AE=
,![]()
(1) 求證:DE⊥AC
(2)求DE與平面BEC所成角的正弦值
(3)直線(xiàn)BE上是否存在一點(diǎn)M,使得CM//平面ADE,若存在,求M的位置,不存在,請(qǐng)說(shuō)明理由。
(1)以A為原點(diǎn),以射線(xiàn)AB,AC,AE為坐標(biāo)軸建立空間直角坐標(biāo)系,
則
由C作平面ABD的垂線(xiàn),垂足為F,則F為BC的中點(diǎn),
,所以點(diǎn)C的坐標(biāo)為
,![]()
![]()
故:DE⊥AC(2)
(3)存在M為BE的中點(diǎn),使得CM//平面ADE
解析試題分析:以A為原點(diǎn),以射線(xiàn)AB,AC,AE為坐標(biāo)軸建立空間直角坐標(biāo)系,
則![]()
由C作平面ABD的垂線(xiàn),垂足為F,則F為BC的中點(diǎn),
,
所以點(diǎn)C的坐標(biāo)為
。
(1)![]()
,故:DE⊥AC。
(2)![]()
設(shè)平面BCE的法向量為
,則
,![]()
設(shè)線(xiàn)面角為
,![]()
(3)設(shè)
,則
。若CM//平面ADE,則
,所以
,故存在M為BE的中點(diǎn),使得CM//平面ADE。
考點(diǎn):空間線(xiàn)面平行的判定及性質(zhì),線(xiàn)面所成角的求解
點(diǎn)評(píng):采用空間向量的方法求解立體幾何問(wèn)題的步驟:建立空間直角坐標(biāo)系,寫(xiě)出相關(guān)點(diǎn)及相關(guān)向量的坐標(biāo),將坐標(biāo)代入證明或計(jì)算求解的對(duì)應(yīng)公式求解,空間向量法要求學(xué)生數(shù)據(jù)處理時(shí)認(rèn)真仔細(xì)
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,四棱錐P-ABCD的底面ABCD是平行四邊形,M、N分別是AB、PC的中點(diǎn),且
.證明:平面PAD⊥平面PDC.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,
中,側(cè)棱與底面垂直,
,
,點(diǎn)
分別為
和
的中點(diǎn).![]()
(1)證明:
;
(2)求二面角
的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,
為圓
的直徑,點(diǎn)
、
在圓
上,矩形
所在的平面和圓
所在的平面互相垂直,且
,
.![]()
(Ⅰ)求證:
平面
;
(Ⅱ)求三棱錐
的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知某幾何體的直觀圖和三視圖如下圖所示,其正視圖為矩形,側(cè)視圖為等腰直角三角形,俯視圖為直角梯形
(1)求證:
; (2)求證:![]()
;
(3)設(shè)
為
中點(diǎn),在
邊上找一點(diǎn)
,使![]()
平面
,并求
的值.![]()
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖。在直三棱柱ABC—A1B1C1中,AB=BC=2AA1,∠ABC=90°,M是BC中點(diǎn)。![]()
(I)求證:A1B∥平面AMC1;
(II)求直線(xiàn)CC1與平面AMC1所成角的正弦值;
(Ⅲ)試問(wèn):在棱A1B1上是否存在點(diǎn)N,使AN與MC1成角60°?若存在,確定點(diǎn)N的位置;若不存在,請(qǐng)說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,正方體ABCD—A1B1C1D1棱長(zhǎng)為8,E、F分別為AD1,CD1中點(diǎn),G、H分別為棱DA,DC上動(dòng)點(diǎn),且EH⊥FG.![]()
(1)求GH長(zhǎng)的取值范圍;
(2)當(dāng)GH取得最小值時(shí),求證:EH與FG共面;并求出此時(shí)EH與FG的交點(diǎn)P到直線(xiàn)
的距離.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com