欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

19.在極坐標(biāo)系中,直線ρcosθ=1與圓ρ=2cosθ的位置關(guān)系是( 。
A.相離B.相切C.相交但不過圓心D.相交且過圓心

分析 利用$\left\{\begin{array}{l}{x=ρcosθ}\\{y=ρsinθ}\end{array}\right.$即可化為直角坐標(biāo)方程,進(jìn)而判斷出位置關(guān)系.

解答 解:直線ρcosθ=1即x=1.
圓ρ=2cosθ即ρ2=2ρcosθ,化為x2+y2=2x,配方為(x-1)2+y2=1.其圓心為(1,0).
可知:直線x=1經(jīng)過圓心(1,0).
∴直線ρcosθ=1與圓ρ=2cosθ的位置關(guān)系是相交且過圓心.
故選:D.

點(diǎn)評(píng) 本題考查了極坐標(biāo)化為直角坐標(biāo)方程、直線與圓的位置關(guān)系,考查了計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知圓C1:x2+y2+2x+2y-8=0與圓C2:x2+y2-2x+10y-24=0相交于AB兩點(diǎn),則公共弦AB所在直線方程為x-2y+4=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知空間兩條不同的直線m,n和兩個(gè)不同的平面α,β,則下列命題正確的是④
①若m∥α,n?α,則m∥n;  ②若α∩β=m,m⊥n,則n⊥α
③若m∥α,n∥α,則m∥n;  ④若m∥α,m?β,α∩β=n,則m∥n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若某幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A.1B.$\frac{4}{3}$C.2D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.設(shè)函數(shù)f(x)=x2+aln(x+1).
(1)若a=-12,寫出函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)在[2,+∞)上單調(diào)遞增,求實(shí)數(shù)a的取值范圍;
(3)若在區(qū)間[0,1]上,函數(shù)f(x)在x=0處取得最大值,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=$\frac{ln(x-2m)}{x}$,m為實(shí)數(shù).
(1)若m=-$\frac{1}{2}$,證明:函數(shù)f(x)是(0,+∞)上的減函數(shù);
(2)若m<$\frac{1}{2}$,曲線y=f(x)在點(diǎn)(1,f(1))處的切線與直線x-y=0平行,求m的值;
(3)若x>0,證明:$\frac{{ln({x+1})}}{x}>\frac{x}{{{e^x}-1}}$(其中e=2.71828…是自然對(duì)數(shù)的底數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.為了創(chuàng)建全國衛(wèi)生城市,在湛江市民中選8名青年志愿者,其中有3名男青年志愿者,5名女青年志愿者,現(xiàn)從中選3人參加“創(chuàng)建全國衛(wèi)生城市”戶外活動(dòng)導(dǎo)引工作,則這3人中既有男青年志愿者又有女青年志愿者的概率為( 。
A.$\frac{45}{512}$B.$\frac{75}{512}$C.$\frac{15}{64}$D.$\frac{45}{56}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知頂點(diǎn)在原點(diǎn)O,準(zhǔn)線方程是y=-1的拋物線與過點(diǎn)M(0,1)的直線l交于A,B兩點(diǎn),若直線OA和直線OB的斜率之和為1
(Ⅰ)求此拋物線的標(biāo)準(zhǔn)方程;
(Ⅱ)求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分圖象如圖所示.
(1)求函數(shù)f(x)的解析式;
(2)求方程f($\frac{3x}{4}$-$\frac{π}{8}$)=f($\frac{π}{2}$)的解.

查看答案和解析>>

同步練習(xí)冊(cè)答案