(本題滿分12分)
在直角坐標(biāo)系
中,點(diǎn)
到兩點(diǎn)
,
的距離之和等于
,設(shè)點(diǎn)
的軌跡為
。
(1)求曲線
的方程;
(2)過點(diǎn)
作兩條互相垂直的直線
分別與曲線
交于
和
。
①以線段
為直徑的圓過能否過坐標(biāo)原點(diǎn),若能求出此時的
值,若不能說明理由;
②求四邊形
面積的取值范圍。
(1)
(2)①
②![]()
解析試題分析:(1)設(shè)
,
由橢圓定義可知,點(diǎn)
的軌跡
是以
為焦點(diǎn),長半軸為
的橢圓.
它的短半軸
,
故曲線C的方程為
. ……4分
(2)①設(shè)直線
,
,
其坐標(biāo)滿足![]()
消去
并整理得
,
故
. ……6分
以線段
為直徑的圓過能否過坐標(biāo)原點(diǎn),則
,即
.
而
,
于是
,
化簡得
,所以
. ……8分
②由①,
,
將上式中的
換為
得
,
由于
,
故四邊形
的面積為
, ……10分
令
,則
,
而
,故
,故
,
當(dāng)直線
或
的斜率有一個不存在時,另一個斜率為
,
不難驗證此時四邊形
的面積為
,
故四邊形
面積的取值范圍是
. ……12分
考點(diǎn):本小題主要考查橢圓標(biāo)準(zhǔn)方程的求法、直線與橢圓的位置關(guān)系、根與系數(shù)的關(guān)系、弦長公式、二次函數(shù)求最值和向量垂直的坐標(biāo)運(yùn)算,考查學(xué)生綜合運(yùn)用所學(xué)知識解決問題的能力和運(yùn)算求解能力.
點(diǎn)評:線段
為直徑的圓過坐標(biāo)原點(diǎn)轉(zhuǎn)化為
是解題的關(guān)鍵,弦長公式是解題時經(jīng)常用到的公式,要熟練掌握,而且探究性問題在高考中經(jīng)常考到,先假設(shè)存在,再求解即可.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(滿分12分)已知點(diǎn)
,直線
:
交
軸于點(diǎn)
,點(diǎn)
是
上的動點(diǎn),過點(diǎn)
垂直于
的直線與線段
的垂直平分線交于點(diǎn)
.
(Ⅰ)求點(diǎn)
的軌跡
的方程;(Ⅱ)若 A、B為軌跡
上的兩個動點(diǎn),且
證明直線AB必過一定點(diǎn),并求出該定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題14分)已知橢圓
的離心率為
,以原點(diǎn)為圓心,橢圓短半軸長為半徑的圓與直線
相切,
分別是橢圓的左右兩個頂點(diǎn),
為橢圓
上的動點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若
與
均不重合,設(shè)直線
的斜率分別為
,求
的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓
:
(
)的短軸長與焦距相等,且過定點(diǎn)
,傾斜角為
的直線
交橢圓
于
、
兩點(diǎn).
(Ⅰ)求橢圓
的方程;
(Ⅱ)確定直線
在
軸上截距的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知橢圓C的中心在原點(diǎn),焦點(diǎn)在
軸上,左右焦點(diǎn)分別為
,且
,
點(diǎn)(1,
)在橢圓C上.
(1)求橢圓C的方程;
(2)過
的直線
與橢圓
相交于
兩點(diǎn),且
的面積為
,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓
,點(diǎn)
在橢圓上。
(1)求橢圓的離心率;
(2)若橢圓的短半軸長為
,直線
與橢圓交于A、B,且線段AB以M(1,1)為中點(diǎn),求直線
的方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題12分) 將圓O:
上各點(diǎn)的縱坐標(biāo)變?yōu)樵瓉淼囊话?(橫坐標(biāo)不變), 得到曲線
、拋物線
的焦點(diǎn)是直線y=x-1與x軸的交點(diǎn).
(1)求
,
的標(biāo)準(zhǔn)方程;
(2)請問是否存在直線
滿足條件:① 過
的焦點(diǎn)
;②與
交于不同兩
點(diǎn)
,
,且滿足
?若存在,求出直線
的方程; 若不存在,說明
理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知雙曲線C的中心在原點(diǎn),拋物線
的焦點(diǎn)是雙曲線C的一個焦點(diǎn),且雙曲線經(jīng)過點(diǎn)
,又知直線
與雙曲線C相交于A、B兩點(diǎn).
(1)求雙曲線C的方程;
(2)若
,求實(shí)數(shù)k值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com