分析 (I)利用面面垂直的性質(zhì)即可得出AO⊥平面BCD;
(II)證明BC⊥平面ABD,于是F到平面ABD的距離d=$\frac{2}{3}$BC,故VA-BEF=VF-ABE=$\frac{1}{3}{S}_{△ABE}•d$.
解答
(I)證明:∵AB=AD,
O是BD的中點(diǎn),
∴AO⊥BD,
又∵平面ABD⊥平面BCD,
平面ABD∩平面BCD=BD,
AO?平面ABD,
∴AO⊥平面BCD.
(II)解:在圖1中,過B作BM⊥CD,垂足為M,則BM=AD=DM=CM=1,
∴∠DBM=∠CBM=45°,
∴BD⊥BC,BC=$\sqrt{2}$,
又∵平面ABD⊥平面BCD,平面ABD∩平面BCD=BD,BC?平面BCD,
∴BC⊥平面ABD,
∵AF=2FC,∴F到平面ABD的距離d=$\frac{2}{3}$BC=$\frac{2\sqrt{2}}{3}$,
∴VA-BEF=VF-ABE=$\frac{1}{3}{S}_{△ABE}•d$=$\frac{1}{3}×\frac{1}{2}×1×\frac{1}{2}×\frac{2\sqrt{2}}{3}$=$\frac{\sqrt{2}}{18}$.
點(diǎn)評(píng) 本題考查了面面垂直的性質(zhì),線面垂直的判定,棱錐的體積計(jì)算,屬于中檔題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | ?x≤0,lnx0>x0 | B. | ?x≤0,lnx0≥x0 | C. | ?x>0,lnx0≥x0 | D. | ?x>0,lnx0<x0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 充分而不必要條件 | B. | 必要而不充分條件 | ||
| C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 否命題 | B. | 逆命題 | C. | 逆否命題 | D. | 否定形式 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | (0,+∞) | B. | (-∞,1) | C. | (-∞,2) | D. | (0,1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | ①④ | B. | ②④ | C. | ①③ | D. | ②③ |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com