【題目】一微商店對(duì)某種產(chǎn)品每天的銷售量(
件)進(jìn)行為期一個(gè)月的數(shù)據(jù)統(tǒng)計(jì)分析,并得出了該月銷售量的直方圖(一個(gè)月按30天計(jì)算)如圖所示.假設(shè)用直方圖中所得的頻率來(lái)估計(jì)相應(yīng)事件發(fā)生的概率.
![]()
(1)求頻率分布直方圖中
的值;
(2)求日銷量的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
(3)若微商在一天的銷售量超過(guò)25件(包括25件),則上級(jí)商企會(huì)給微商贈(zèng)送100元的禮金,估計(jì)該微商在一年內(nèi)獲得的禮金數(shù).
【答案】(1)0.02;(2)22.5;(3)10800元
【解析】
(1)由頻率分布直方圖概率和為1,列出方程求a的值;(2)由頻率分布直方圖均值計(jì)算公式:每個(gè)條形圖中點(diǎn)的坐標(biāo)乘高,然后求和為平均值;(3)先根據(jù)頻率分布直方圖計(jì)算出日銷售量超過(guò)25件的天數(shù),然后估計(jì)一年內(nèi)獲得的禮金數(shù).
(1)由題意可得![]()
(2)根據(jù)已知的頻率分布直方圖,日銷售量的平均值為
.
(3)根據(jù)頻率分布直方圖,日銷售量超過(guò)25件(包括25件)的天數(shù)為
,可獲得的獎(jiǎng)勵(lì)為900元,
依次可以估計(jì)一年內(nèi)獲得的禮金數(shù)為
元.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知過(guò)點(diǎn)
的橢圓
:
(
)的左右焦點(diǎn)分別為
、
,
為橢圓上的任意一點(diǎn),且
,
,
成等差數(shù)列.
(1)求橢圓
的標(biāo)準(zhǔn)方程;
(2)直線
:
交橢圓于
,
兩點(diǎn),若點(diǎn)
始終在以
為直徑的圓外,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于函數(shù)
,若關(guān)系式
中變量
是變量
的函數(shù),則稱函數(shù)
為可變換函數(shù).例如:對(duì)于函數(shù)
,若
,則
,所以變量
是變量
的函數(shù),所以
是可變換函數(shù).
(1)求證:反比例函數(shù)
不是可變換函數(shù);
(2)試判斷函數(shù)
是否是可變換函數(shù)并說(shuō)明理由;
(3)若函數(shù)
為可變換函數(shù),求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
,
.
(Ⅰ)若
為偶函數(shù),求
的值并寫出
的增區(qū)間;
(Ⅱ)若關(guān)于
的不等式
的解集為
,當(dāng)
時(shí),求
的最小值;
(Ⅲ)對(duì)任意的
,
,不等式
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】平面直角坐標(biāo)系xOy中,過(guò)橢圓M:
(a>b>0)右焦點(diǎn)的直線x+y﹣
=0交M于A,B兩點(diǎn),P為AB的中點(diǎn),且OP的斜率為
.
(1)求M的方程
(2)C,D為M上的兩點(diǎn),若四邊形ACBD的對(duì)角線CD⊥AB,求四邊形ACBD面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在空間中有如下命題,其中正確的是( )
A. 若直線a和b共面,直線b和c共面,則直線a和c共面;
B. 若平面α內(nèi)的任意直線m∥平面β,則平面α∥平面β;
C. 若直線a與平面
不垂直,則直線a與平面
內(nèi)的所有直線都不垂直;
D. 若點(diǎn)P到三角形三條邊的距離相等,則點(diǎn)P在該三角形所在平面內(nèi)的射影是該三角形的內(nèi)心.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓E:
的右焦點(diǎn)為F(3,0),過(guò)點(diǎn)F的直線交橢圓E于A、B兩點(diǎn).若AB的中點(diǎn)坐標(biāo)為(1,﹣1),則E的方程為( )
A.![]()
B.![]()
C.![]()
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)某大學(xué)的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關(guān)關(guān)系,根據(jù)一組樣本數(shù)據(jù)(xi,yi)(i=1,2,…,n),用最小二乘法建立的回歸方程為
=0.85x-85.71,則下列結(jié)論中不正確的是
A. y與x具有正的線性相關(guān)關(guān)系
B. 回歸直線過(guò)樣本點(diǎn)的中心(
,
)
C. 若該大學(xué)某女生身高增加1cm,則其體重約增加0.85kg
D. 若該大學(xué)某女生身高為170cm,則可斷定其體重比為58.79kg
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本題滿分12分)已知一次函數(shù)f(x)滿足:f(1)=2, f(2x)=2f(x)-1.
(1) 求f(x)的解析式;
(2) 設(shè)
, 若|g(x)|-af(x)+a≥0,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com