分析 (Ⅰ)∵曲線C2的極坐標(biāo)方程轉(zhuǎn)化為ρ2=4ρsinθ+4ρcosθ-4,由ρ2=x2+y2,ρsinθ=y,ρcosθ=x,得:(x-2)2+(y-2)2=4,由此得到曲線C2表示以(2,2)為圓心,以2為半徑的圓.
(Ⅱ)消去參數(shù)得曲線C1的直角坐標(biāo)方程為tanα•x-y-tanα+1=0,求出圓心C2(2,2)到曲線C1:tanα•x-y-tanα+1=0的距離d,|AB|=2×$\sqrt{{r}^{2}-24ooqag^{2}}$,由此能求出結(jié)果.
解答 解:(Ⅰ)∵曲線C2的極坐標(biāo)方程為ρ2=4$\sqrt{2}$ρsin(θ+$\frac{π}{4}$)-4=4ρsinθ+4ρcosθ-4,
∴由ρ2=x2+y2,ρsinθ=y,ρcosθ=x,
得到曲線C2的直角坐標(biāo)方程為:x2+y2=4y+4x-4,
整理,得:(x-2)2+(y-2)2=4,
∴曲線C2表示以(2,2)為圓心,以2為半徑的圓.
(Ⅱ)∵曲線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=1+tcosα}\\{y=1+tsinα}\end{array}\right.$(t為參數(shù)),
∴消去參數(shù)得曲線C1的直角坐標(biāo)方程為tanα•x-y-tanα+1=0,
當(dāng)曲線C1過(guò)圓心C2(2,2)時(shí),tanα=1,α=45°,
此時(shí)|AB|取最大值2r=2$\sqrt{2}$.
圓心C2(2,2)到曲線C1:tanα•x-y-tanα+1=0的距離為:
d=$\frac{|2tanα-2-tanα+1|}{\sqrt{ta{n}^{2}α+1}}$=$\frac{|tanα-1|}{\sqrt{ta{n}^{2}α+1}}$,
|AB|=2×$\sqrt{{r}^{2}-2qmcs6w^{2}}$=2$\sqrt{2-\frac{ta{n}^{2}α+1-2tanα}{ta{n}^{2}α+1}}$=2$\sqrt{1+\frac{2tanα}{ta{n}^{2}α+1}}$,
∴當(dāng)tanα=0,即α=0時(shí),|AB|取最小值2.
點(diǎn)評(píng) 本小題主要考查曲線的直角坐標(biāo)方程的求法,考查弦長(zhǎng)的最值的求法,考查參數(shù)方程、極坐標(biāo)等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,考查數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想,是中檔題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 4 | B. | 6 | C. | 8 | D. | 10 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 16π | B. | 64π | C. | $\frac{32}{3}$π | D. | 32π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $\frac{7}{3}$ | B. | $\frac{8-π}{3}$ | C. | $\frac{8}{3}$ | D. | $\frac{7-π}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 83 | B. | 84 | C. | 85 | D. | 86 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $\sqrt{46}$ | B. | 7 | C. | 5 | D. | $\sqrt{21}$ |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com