分析 (Ⅰ)由已知條件利用概率加法公式和相互獨立事件概率乘法公式列出方程組,能求出該同學通過選拔進入“體育隊”的概率p1和進入“文藝隊”的概率p2.
(Ⅱ)依題意隨機變量X的可能取值為0,1,2,3,分別求出相應的概率,由此能求出X的分布列和E(X).
解答 解:(Ⅰ)∵某同學通過選拔考試進入學校的“體育隊”和“文藝隊”,
進入這兩個隊成功與否是相互獨立的,能同時進入這兩個隊的概率是$\frac{1}{24}$,至少能進入一個隊的概率是$\frac{3}{8}$,
并且能進入“體育隊”的概率小于能進入“文藝隊”的概率.
該同學通過選拔進入“體育隊”的概率p1和進入“文藝隊”的概率p2,
∴$\left\{\begin{array}{l}{{p}_{1}{p}_{2}=\frac{1}{24}}\\{{p}_{1}+{p}_{2}-{p}_{1}{p}_{2}=\frac{3}{8}}\\{{p}_{1}<{p}_{2}}\end{array}\right.$,
解得${p}_{1}=\frac{1}{6},{p}_{2}=\frac{1}{4}$.
(Ⅱ)依題意隨機變量X的可能取值為0,1,2,3,
P(X=0)=(1-$\frac{1}{6}$)(1-$\frac{1}{4}$)=$\frac{5}{8}$,
P(X=1)=(1-$\frac{1}{6}$)×$\frac{1}{4}$=$\frac{5}{24}$,
P(X=2)=$\frac{1}{6}×(1-\frac{1}{4})$=$\frac{1}{8}$,
P(X=3)=$\frac{1}{6}×\frac{1}{4}$=$\frac{1}{24}$,
∴X的分布列:
| X | 0 | 1 | 2 | 3 |
| P | $\frac{5}{8}$ | $\frac{5}{24}$ | $\frac{1}{8}$ | $\frac{1}{24}$ |
點評 本題考查概率的求法,考查離散型隨機變量的分布列和數(shù)學期望的求法,是中檔題,解題時要認真審題,注意概率加法公式和相互獨立事件概率乘法公式的合理運用.
科目:高中數(shù)學 來源: 題型:選擇題
| A. | 30° | B. | 45° | C. | 60° | D. | 90° |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | [2,5] | B. | (-∞,2]∪[5,+∞) | C. | (-∞,3]∪[5,+∞) | D. | [3,5] |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | 1 | B. | 2 | C. | -1 | D. | 0 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | f(x)是周期函數(shù) | B. | f(x)-2=f(x+1) | C. | f(x+2)-1=f(x) | D. | f(x)-1=f(x+2) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com