(本小題滿分l2分)
如圖,在多面體ABCDEF中,ABCD為菱形,
ABC=60
,EC
面ABCD,F(xiàn)A
面ABCD,G為BF的中點,若EG//面ABCD.
![]()
(1)求證:EG
面ABF;
(2)若AF=AB,求二面角B—EF—D的余弦值.
(1)∵在正三角形ABC中,CM
AB,又AF
CM∴EG
AB, EG
AF,∴EG
面ABF.
(2)![]()
【解析】
試題分析:(1)取AB的中點M,連結(jié)GM,MC,G為BF的中點,
![]()
所以GM //FA,又EC
面ABCD, FA
面ABCD,
∵CE//AF,
∴CE//GM,
∵面CEGM
面ABCD=CM,
EG// 面ABCD,
∴EG//CM,
∵在正三角形ABC中,CM
AB,又AF
CM
∴EG
AB, EG
AF,
∴EG
面ABF.
(2)建立如圖所示的坐標系,設(shè)AB=2,
則B(
)E(0,1,1) F(0,-1,2)
![]()
=(0,-2,1) ,
=(
,-1,-1),
=(
,1, 1),
設(shè)平面BEF的法向量
=(
)則
令
,則
,
∴
=(
)
同理,可求平面DEF的法向量
=(-
)
設(shè)所求二面角的平面角為
,則
=
.
考點:用空間向量求平面間的夾角;直線與平面垂直的判定;二面角的平面角及求法.
點評:本題考查線面垂直,考查面面角,正確運用線面垂直的判定,求出平面的法向量是解題的關(guān)鍵.
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年山東省高三下學(xué)期模擬沖刺考試理科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分l2分)已知數(shù)列{an}中,a1=1,a2=3且2an+1=an+2+an(n∈N*).數(shù)列{bn}的前n項和為Sn,其中b1=-
,bn+1=-
Sn(n∈N*).
(1)求數(shù)列{an}和{bn}的通項公式;
(2)若Tn=
+
+…+
,求Tn的表達式
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年山東省高三下學(xué)期模擬沖刺考試理科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分l2分)已知橢圓的的右頂點為A,離心率
,過左焦點
作直線
與橢圓交于點P,Q,直線AP,AQ分別與直線
交于點
.
(Ⅰ)求橢圓的方程;
(Ⅱ)證明以線段
為直徑的圓經(jīng)過焦點
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年貴州省高三年級第五次月考文科數(shù)學(xué) 題型:解答題
(本小題滿分l2分)(注意:在試題卷上作答無效)
求經(jīng)過A(2,-1),和直線x+y=1相切,且圓心在直線y=-2x上的圓的方程
(I)求出圓的標準方程
(II)求出(I)中的圓與直線3x+4y=0相交的弦長AB
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年廣東省高三上學(xué)期10月月考理科數(shù)學(xué)卷 題型:解答題
(本小題滿分l2分)設(shè)命題
:函數(shù)
(
)的值域是
;命題
:指數(shù)函數(shù)
在
上是減函數(shù).若命題“
或
”是假命題,求實數(shù)
的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆山西省高二第二學(xué)期3月月考理科數(shù)學(xué)試卷 題型:解答題
(本小題滿分l2分)求垂直于直線
并且與曲線
相切的直線方程.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com