【題目】如圖,在棱長為
的正方體
中,
,
,
分別是棱
、
和
所在直線上的動點:
![]()
(1)求
的取值范圍:
(2)若
為面
內的一點,且
,
,求
的余弦值:
(3)若
、
分別是所在正方形棱的中點,試問在棱
上能否找到一點
,使
平面
?若能,試確定點
的位置,若不能,請說明理由.
科目:高中數學 來源: 題型:
【題目】對于定義域為
的函數
,如果存在區(qū)間
,其中
,同時滿足:
①
在
內是單調函數:②當定義域為
時,
的值域為
,則稱函數
是區(qū)間
上的“保值函數”,區(qū)間
稱為“保值函數”.
(1)求證:函數
不是定義域
上的“保值函數”;
(2)若函數
(
)是區(qū)間
上的“保值函數”,求
的取值范圍;
(3)對(2)中函數
,若不等式
對
恒成立,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】過雙曲線
的左焦點
作圓
的切線交雙曲線的右支于點
,且切點為
,已知
為坐標原點,
為線段
的中點(
點在切點
的右側),若
的周長為
,則雙曲線的漸近線的方程為( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知
為坐標原點,橢圓
:
的左、右焦點分別為
,
.過焦點且垂直于
軸的直線與橢圓
相交所得的弦長為3,直線
與橢圓
相切.
(1)求橢圓
的標準方程;
(2)是否存在直線
:
與橢圓
相交于
兩點,使得
?若存在,求
的取值范圍;若不存在,請說明理由!
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系
中,曲線
的參數方程為
(
為參數且
)曲線
的參數方程為
(
為參數,且
),以
為極點,
軸的正半軸為極軸建立極坐標系,曲線
的極坐標方程為:
,曲線
的極坐標方程為
.
(1)求
與
的交點到極點的距離;
(2)設
與
交于
點,
與
交于
點,當
在
上變化時,求
的最大值.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com