【題目】某市計(jì)劃在一片空地上建一個(gè)集購(gòu)物、餐飲、娛樂(lè)為一體的大型綜合園區(qū),如圖,已知兩個(gè)購(gòu)物廣場(chǎng)的占地都呈正方形,它們的面積分別為13公頃和8公頃;美食城和歡樂(lè)大世界的占地也都呈正方形,分別記它們的面積為
公頃和
公頃;由購(gòu)物廣場(chǎng)、美食城和歡樂(lè)大世界圍成的兩塊公共綠地都呈三角形,分別記它們的面積為
公頃和
公頃.
![]()
(1)設(shè)
,用關(guān)于
的函數(shù)
表示
,并求
在區(qū)間
上的最大值的近似值(精確到0.001公頃);
(2)如果
,并且
,試分別求出
、
、
、
的值.
【答案】(1)
,最大值
公頃;(2)17、25、5、5.
【解析】
(1)由余弦定理求出三角形ABC的邊長(zhǎng)BC,進(jìn)而可以求出
,
,由面積公式求出
,
,即可求出
,并求出最值;(2)由(1)知,
,
,即可求出
、
,再算出
,代入(1)中表達(dá)式求出
,
。
(1)由余弦定理得,
,
所以,
,同理可得![]()
又
,
所以
,
故
在區(qū)間
上的最大值為
,近似值為
。
(2)由(1)知,
,
,所以
,進(jìn)而
,
由
知,
,
,
故
、
、
、
的值分別是17、25、5、5。
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著城市地鐵建設(shè)的持續(xù)推進(jìn),市民的出行也越來(lái)越便利.根據(jù)大數(shù)據(jù)統(tǒng)計(jì),某條地鐵線(xiàn)路運(yùn)行時(shí),發(fā)車(chē)時(shí)間間隔t(單位:分鐘)滿(mǎn)足:4≤t≤15,
N,平均每趟地鐵的載客人數(shù)p(t)(單位:人)與發(fā)車(chē)時(shí)間間隔t近似地滿(mǎn)足下列函數(shù)關(guān)系:
,其中
.
(1)若平均每趟地鐵的載客人數(shù)不超過(guò)1500人,試求發(fā)車(chē)時(shí)間間隔t的值.
(2)若平均每趟地鐵每分鐘的凈收益為
(單位:元),問(wèn)當(dāng)發(fā)車(chē)時(shí)間間隔t為多少時(shí),平均每趟地鐵每分鐘的凈收益最大?井求出最大凈收益.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)數(shù)列
的各項(xiàng)都是正數(shù),若對(duì)于任意的正整數(shù)
,存在
,使得
、
、
成等比數(shù)列,則稱(chēng)函數(shù)
為“
型”數(shù)列.
(1)若
是“
型”數(shù)列,且
,
,求
的值;
(2)若
是“
型”數(shù)列,且
,
,求
的前
項(xiàng)和
;
(3)若
既是“
型”數(shù)列,又是“
型”數(shù)列,求證:數(shù)列
是等比數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=(2x-4)ex+a(x+2)2(x>0,a∈R,e是自然對(duì)數(shù)的底數(shù)).
(1)若f(x)是(0,+∞)上的單調(diào)遞增函數(shù),求實(shí)數(shù)a的取值范圍;
(2)當(dāng)a∈
時(shí),證明:函數(shù)f(x)有最小值,并求函數(shù)f(x)的最小值的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義在R上的奇函數(shù)
,當(dāng)
時(shí), ![]()
則函數(shù)
的所有零點(diǎn)之和為_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐P-ABCD中,AD∥BC,
ADC=
PAB=90°,BC=CD=
AD.E為棱AD的中點(diǎn),異面直線(xiàn)PA與CD所成的角為90°.
![]()
(I)在平面PAB內(nèi)找一點(diǎn)M,使得直線(xiàn)CM∥平面PBE,并說(shuō)明理由;
(II)若二面角P-CD-A的大小為45°,求直線(xiàn)PA與平面PCE所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知
,函數(shù)
,
.
(1)求
的單調(diào)區(qū)間
(2)討論
零點(diǎn)的個(gè)數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
,
,其中
,
(1)當(dāng)
時(shí),求使得等式
成立的
的取值范圍;
(2)當(dāng)
時(shí),求使得等式
成立的
的取值范圍;
(3)求
的區(qū)間
上的最大值
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一列函數(shù)
,設(shè)直線(xiàn)
與
的交點(diǎn)為
,點(diǎn)
在
軸和直線(xiàn)
上的射影分別為
,記
的面積為
,
的面積為
.
(1)求
的最小值,并指出此時(shí)
的取值;
(2)在
中任取一個(gè)函數(shù),求該函數(shù)在
上是增函數(shù)或在
上是減函數(shù)的概率;
(3)是否存在正整數(shù)
,使得
成立,若存在,求出
的值,若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com