【題目】已知點(diǎn)C為圓(x+1)2+y2=8的圓心,P是圓上的動(dòng)點(diǎn),點(diǎn)Q在圓的半徑CP上,且有點(diǎn)A(1,0)和AP上的點(diǎn)M,滿足
=0,
=2
.
(1)當(dāng)點(diǎn)P在圓上運(yùn)動(dòng)時(shí),求點(diǎn)Q的軌跡方程;
(2)若斜率為k的直線 l與圓x2+y2=1相切,直線 l與(1)中所求點(diǎn)Q的軌跡交于不同的兩點(diǎn)F,H,O是坐標(biāo)原點(diǎn),且
≤
≤
時(shí),求k的取值范圍.
【答案】
(1)解:由題意知MQ中線段AP的垂直平分線,
∴
,
∴點(diǎn)Q的軌跡是以點(diǎn)C,A為焦點(diǎn),焦距為2,長(zhǎng)軸為
的橢圓,
,
故點(diǎn)Q的軌跡方程是
.
(2)解:設(shè)直線l:y=kx+b,F(xiàn)(x1,y1),H(x2,y2)
直線l與圓x2+y2=1相切 ![]()
聯(lián)立
,(1+2k2)x2+4kbx+2b2﹣2=0,
△=16k2b2﹣4(1+2k2)2(b2﹣1)=8(2k2﹣b2+1)=8k2>0,可得k≠0,
∴
,
=
=
=
,
∴
![]()
為所求
【解析】(1)利用線段的垂直平分線的性質(zhì)、橢圓的定義即可得出.(2)設(shè)直線l:y=kx+b,F(xiàn)(x1 , y1),H(x2 , y2)直線l與圓x2+y2=1相切,可得b2=k2+1.直線方程與橢圓方程聯(lián)立可得:(1+2k2)x2+4kbx+2b2﹣2=0,△>0,可得k≠0,再利用數(shù)量積運(yùn)算性質(zhì)、根與系數(shù)的關(guān)系及其
≤
≤
,解出即可得出.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)
,函數(shù)
.
(1)若
,
極大值;
(2)若
無(wú)零點(diǎn),求實(shí)數(shù)
的取值范圍;
(3)若
有兩個(gè)相異零點(diǎn)
,
,求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知集合A={x|2≤x≤8},B={x|1<x<6},C={x|x>a},U=R.
(1)求A∪B,(CUA)∩B;
(2)若A∩C≠
,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(多選題)對(duì)任意實(shí)數(shù)
,
,
,下列命題中正確的是( )
A.“
”是“
”的充要條件
B.“
是無(wú)理數(shù)”是“
是無(wú)理數(shù)”的充要條件
C.“
”是“
”的充分條件
D.“
”是“
”的必要條件
E.“
”是“
”的必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知f(x)=(ex-a)2+(e-x-a)2(a≥0).
(1)將f(x)表示成u(其中u=
)的函數(shù);
(2)求f(x)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD外接于圓,AC是圓周角∠BAD的角平分線,過(guò)點(diǎn)C的切線與AD延長(zhǎng)線交于點(diǎn)E,AC交BD于點(diǎn)F. ![]()
(1)求證:BD∥CE;
(2)若AB是圓的直徑,AB=4,DE=1,求AD的長(zhǎng)度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)集合A=[0,
),B=[
,1],函數(shù)f (x)=
,若x0∈A,且f[f (x0)]∈A,則x0的取值范圍是( )
A.(0,
]
B.[
,
]
C.(
,
)
D.[0,
]
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知F1 , F2分別是橢圓C:
(a>b>0)的兩個(gè)焦點(diǎn),P(1,
)是橢圓上一點(diǎn),且
|PF1|,|F1F2|,
|PF2|成等差數(shù)列.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)已知?jiǎng)又本l過(guò)點(diǎn)F2 , 且與橢圓C交于A,B兩點(diǎn),試問(wèn)x軸上是否存在定點(diǎn)Q,使得
=﹣
恒成立?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為
(t為參數(shù)),以原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,圓C的極坐標(biāo)方程為ρ=2
sinθ.
(1)求圓C的直角做標(biāo)方程;
(2)圓C的圓心為C,點(diǎn)P為直線l上的動(dòng)點(diǎn),求|PC|的最小值.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com