【題目】如圖,已知四邊形ABCD和BCEG均為直角梯形,AD∥BC,CE∥BG,且∠BCD=∠BCE=
,平面ABCD⊥平面BCEG,BC=CD=CE=2BG=2. ![]()
(1)證明:AG∥平面BDE;
(2)求二面角E﹣BD﹣G的余弦值.
【答案】
(1)證明:由平面ABCD⊥平面BCEG,平面ABCD∩平面BCEG=BC,CE⊥BC,CE平面BCEG,
∴EC⊥平面ABCD.
根據(jù)題意以C為原點(diǎn),CD,CB,CE分別為x,y,z軸,建立如圖所示的空間直角坐標(biāo)系,
則B(0,2,0),D(2,0,0),E(0,0,2),A(2,1,0)G(0,2,1)
設(shè)平面BDE的法向量為
=(x,y,z),
∵
,
=(2,0,﹣2),
∴
,∴x=y=z,
∴平面BDE的一個(gè)法向量為
=(1,1,1),
∵
=(﹣2,1,1),∴
=﹣2+1+1=0,∴
⊥
,
∵AG平面BDE,
∴AG∥平面BDE
(2)解:設(shè)平面BDG的法向量為
=(x,y,z),
∵
=(2,﹣2,0),
=(0,0,1),
∴
,
取x=1,得平面BDG的一個(gè)法向量為
=(1,1,0),
設(shè)二面角E﹣BD﹣G的平面角為θ,
則cosθ=
=
=
,
故二面角E﹣BD﹣G的余弦值為 ![]()
![]()
【解析】(1)根據(jù)題意以C為原點(diǎn),CD,CB,CE分別為x,y,z軸,建立空間直角坐標(biāo)系,利用向量法能證明AG∥平面BDE.(2)求出平面BDG的一個(gè)法向量和平面BDE的一個(gè)法向量,利用向量法能求出二面角E﹣BD﹣G的余弦值.
【考點(diǎn)精析】利用直線與平面平行的判定對(duì)題目進(jìn)行判斷即可得到答案,需要熟知平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行;簡(jiǎn)記為:線線平行,則線面平行.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓方程
(
)的離心率為
, 短軸長(zhǎng)為2.
(1) 求橢圓的標(biāo)準(zhǔn)方程;
(2) 直線
(
)與
軸的交點(diǎn)為
(點(diǎn)
不在橢圓外), 且與橢圓交于兩個(gè)不同的點(diǎn)
. 若線段
的中垂線恰好經(jīng)過(guò)橢圓的下端點(diǎn)
, 且與線段
交于點(diǎn)
, 求
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2017年兩會(huì)繼續(xù)關(guān)注了鄉(xiāng)村教師的問(wèn)題,隨著城鄉(xiāng)發(fā)展失衡,鄉(xiāng)村教師待遇得不到保障,流失現(xiàn)象嚴(yán)重,教師短缺會(huì)嚴(yán)重影響鄉(xiāng)村孩子的教育問(wèn)題,為此,某市今年要為某所鄉(xiāng)村中學(xué)招聘儲(chǔ)備未來(lái)三年的教師,現(xiàn)在每招聘一名教師需要2萬(wàn)元,若三年后教師嚴(yán)重短缺時(shí)再招聘,由于各種因素,則每招聘一名教師需要5萬(wàn)元,已知現(xiàn)在該鄉(xiāng)村中學(xué)無(wú)多余教師,為決策應(yīng)招聘多少鄉(xiāng)村教師搜集并整理了該市100所鄉(xiāng)村中學(xué)在過(guò)去三年內(nèi)的教師流失數(shù),得到如下的柱狀圖:記x表示一所鄉(xiāng)村中學(xué)在過(guò)去三年內(nèi)流失的教師數(shù),y表示一所鄉(xiāng)村中學(xué)未來(lái)四年內(nèi)在招聘教師上所需的費(fèi)用(單位:萬(wàn)元),n表示今年為該鄉(xiāng)村中學(xué)招聘的教師數(shù),為保障鄉(xiāng)村孩子教育不受影響,若未來(lái)三年內(nèi)教師有短缺,則第四年馬上招聘.
![]()
(1)若n=19,求y與x的函數(shù)解析式;
(2)若要求“流失的教師數(shù)不大于n”的頻率不小于0.5,求n的最小值;
(3)假設(shè)今年該市為這100所鄉(xiāng)村中學(xué)的每一所都招聘了19個(gè)教師或20個(gè)教師,分別計(jì)算該市未來(lái)四年內(nèi)為這100所鄉(xiāng)村中學(xué)招聘教師所需費(fèi)用的平均數(shù),以此作為決策依據(jù),今年該鄉(xiāng)村中學(xué)應(yīng)招聘19名還是20名教師?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知0<x<
,sinx﹣cosx=
,存在a,b,c(a,b,c∈N*),使得(a﹣πb)tan2x﹣ctanx+(a﹣πb)=0,則2a+3b+c=( )
A.50
B.70
C.110
D.120
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某種設(shè)備隨著使用年限的增加,每年的維護(hù)費(fèi)相應(yīng)增加.現(xiàn)對(duì)一批該設(shè)備進(jìn)行調(diào)查,得到這批設(shè)備自購(gòu)入使用之日起,前五年平均每臺(tái)設(shè)備每年的維護(hù)費(fèi)用大致如下表:
年份 | 1 | 2 | 3 | 4 | 5 |
維護(hù)費(fèi) | 1.1 | 1.5 | 1.8 | 2.2 | 2.4 |
(Ⅰ)求
關(guān)于
的線性回歸方程;
(Ⅱ)若該設(shè)備的價(jià)格是每臺(tái)5萬(wàn)元,甲認(rèn)為應(yīng)該使用滿五年換一次設(shè)備,而乙則認(rèn)為應(yīng)該使用滿十年換一次設(shè)備,你認(rèn)為甲和乙誰(shuí)更有道理?并說(shuō)明理由.
(參考公式:
.)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】
袋中有形狀和大小完全相同的四種不同顏色的小球,每種顏色的小球各有4個(gè),分別編號(hào)為1,2,3,4.現(xiàn)從袋中隨機(jī)取兩個(gè)球.
(Ⅰ)若兩個(gè)球顏色不同,求不同取法的種數(shù);
(Ⅱ)在(1)的條件下,記兩球編號(hào)的差的絕對(duì)值為隨機(jī)變量X,求隨機(jī)變量X的概率分布與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知向量
=(2cosx,t)(t∈R),
=(sinx﹣cosx,1),函數(shù)y=f(x)=
,將y=f(x)的圖象向左平移
個(gè)單位長(zhǎng)度后得到y(tǒng)=g(x)的圖象且y=g(x)在區(qū)間[0,
]內(nèi)的最大值為
.
(1)求t的值及y=f(x)的最小正周期;
(2)設(shè)△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,若
g(
﹣
)=﹣1,a=2,求BC邊上的高的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
.
(Ⅰ)求
的單調(diào)區(qū)間;
(Ⅱ)求
在區(qū)間
上的最小值.
【答案】(Ⅰ)
;(Ⅱ)
.
【解析】(Ⅰ)
.
令
,得
.
![]()
與
的情況如上:
所以,
的單調(diào)遞減區(qū)間是
,單調(diào)遞增區(qū)間是
.
(Ⅱ)當(dāng)
,即
時(shí),函數(shù)
在
上單調(diào)遞增,
所以
在區(qū)間
上的最小值為
.
當(dāng)
,即
時(shí),
由(Ⅰ)知
在
上單調(diào)遞減,在
上單調(diào)遞增,
所以
在區(qū)間
上的最小值為
.
當(dāng)
,即
時(shí),函數(shù)
在
上單調(diào)遞減,
所以
在區(qū)間
上的最小值為
.
綜上,當(dāng)
時(shí),
的最小值為
;
當(dāng)
時(shí),
的最小值為
;
當(dāng)
時(shí),
的最小值為
.
【題型】解答題
【結(jié)束】
19
【題目】已知拋物線
的頂點(diǎn)在原點(diǎn),焦點(diǎn)在坐標(biāo)軸上,點(diǎn)
為拋物線
上一點(diǎn).
(1)求
的方程;
(2)若點(diǎn)
在
上,過(guò)
作
的兩弦
與
,若
,求證: 直線
過(guò)定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(
,
),其圖像與直線
相鄰兩個(gè)交點(diǎn)的距離為
,若
對(duì)于任意的
恒成立, 則
的取值范圍是( )
A.
B.
C.
D. ![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com