設函數(shù)f(x)=
×
,其中向量
="(2cosx,1),"
=(cosx,
sin2x+m).
(1)求函數(shù)f(x)的最小正周期和f(x)在[0, p]上的單調(diào)遞增區(qū)間;
(2)當xÎ[0
]時,ô f(x)ô <4恒成立,求實數(shù)m的取值范圍.
(1) f(x)的最小正周期T=p,在[0, p]上的單調(diào)遞增區(qū)間為[0,
],[
,p];
(2) -4<m<1.
【解析】
試題分析:(1)f(x)=
×
=2cos2x+
sin2x+m
1分
=cos2x+
sin2x+m+1=2sin(2x+
)+m+1
3分
∴f(x)的最小正周期T=p, 4分
在[0, p]上的單調(diào)遞增區(qū)間為[0,
],[
,p] 6分
(2)∵當xÎ[0,
]時,
遞增,當xÎ[
,
]時,
遞減,
∴當
時,
的最大值等于
. 8分
當x=
時,
的最小值等于m. 10分
由題設知
解之得,-4<m<1.
12分
考點:本題主要考查平面向量的數(shù)量積,平面向量的坐標運算,三角函數(shù)的和差倍半公式,三角函數(shù)的圖象和性質(zhì)。
點評:中檔題,本題綜合考查平面向量的數(shù)量積,平面向量的坐標運算,三角函數(shù)的和差倍半公式,三角函數(shù)、二次函數(shù)的圖象和性質(zhì)。利用向量的運算,得到三角函數(shù)式,運用三角公式進行化簡,以便于利用其它知識解題,是這類題的顯著特點。本題(2)涉及角的范圍,易于出錯。
科目:高中數(shù)學 來源: 題型:
| π |
| 4 |
| 5π |
| 8 |
| 7π |
| 8 |
| π |
| 8 |
| 3π |
| 8 |
| π |
| 8 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
| 1 |
| 2 |
| 2x+t |
| x2-3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
| 1 |
| 2 |
| 1 |
| 2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
| 1 | 2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
| 2x2 | x+1 |
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com