【題目】(1)求證:
,其中
;
(2)求證:
.
【答案】(1)證明見解析;
(2)證明見解析.
【解析】
(1)分別當(dāng)
為正偶數(shù)、正奇數(shù)時,結(jié)合二項式展開式,進(jìn)行證明;
(2)要證明的式子的一般形式為:
=
,只要這個式子成立,那么所證明的式子也就成立.利用組合數(shù)的性質(zhì),可以證明出:右邊=![]()
![]()
,再通過組合數(shù)的公式可以得出:
,右邊的式子展開,結(jié)合(1)的結(jié)論可以證明出
,構(gòu)造數(shù)列:設(shè)
,
,利用累和法求得
,所要證明的式子成立,當(dāng)
,命題得證.
證明(1)當(dāng)
為正偶數(shù)時,
左邊
,
,
,
,所以左邊=1=右邊;
當(dāng)
為正奇數(shù)時,
左邊
,
,
,
,所以左邊=1=右邊.
(2)要證明的等式的一般形式為:
=
,現(xiàn)證明此等式成立.
右邊=![]()
![]()
![]()
,
![]()
,
由(1)可知
,所以
,
設(shè)
,
,
當(dāng)
時,![]()
時,也成立,
命題得證,當(dāng)
,顯然也成立.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方體
,則下列四個命題:
①點
在直線
上運動,三棱錐
的體積不變
②點
在直線
上運動,直線
與平面
所成角的大小不變
③點
在直線
上運動,二面角
的大小不變
④點
是平面
上到點
和
距離相等的動點,則
的軌跡是過點
的直線.
其中的真命題是( )
![]()
A.①③B.①③④C.①②④D.③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公交公司為了方便市民出行,科學(xué)規(guī)劃車輛投放,在一個人員密集流動地段增設(shè)一個起點站,為了研究車輛發(fā)車間隔時間x與乘客等候人數(shù)y之間的關(guān)系,經(jīng)過調(diào)查得到如下數(shù)據(jù):
間隔時間x/分 | 10 | 11 | 12 | 13 | 14 | 15 |
等候人數(shù)y/人 | 23 | 25 | 26 | 29 | 28 | 31 |
調(diào)查小組先從這6組數(shù)據(jù)中選取4組數(shù)據(jù)求線性回歸方程,再用剩下的2組數(shù)據(jù)進(jìn)行檢驗.檢驗方法如下:先用求得的線性回歸方程計算間隔時間對應(yīng)的等候人數(shù)
,再求
與實際等候人數(shù)y的差,若差值的絕對值都不超過1,則稱所求方程是“恰當(dāng)回歸方程”.
(1)從這6組數(shù)據(jù)中隨機(jī)選取4組數(shù)據(jù),求剩下的2組數(shù)據(jù)的間隔時間相鄰的概率;
(2)若選取的是中間4組數(shù)據(jù),求y關(guān)于x的線性回歸方程
,并判斷此方程是否是“恰當(dāng)回歸方程”.
附:對于一組數(shù)據(jù)
,其回歸直線
的斜率和截距的最小二乘估計分別為:
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
:
(
)的離心率為
,設(shè)直線
過橢圓
的上頂點和右頂點,坐標(biāo)原點
到直線
的距離為
.
(1)求橢圓
的方程.
(2)過點
且斜率不為零的直線
交橢圓
于
,
兩點,在
軸的正半軸上是否存在定點
,使得直線
,
的斜率之積為非零的常數(shù)?若存在,求出定點
的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠對一批產(chǎn)品進(jìn)行了抽樣檢測.如圖是根據(jù)抽樣檢測后的產(chǎn)品凈重(單位:克)數(shù)據(jù)繪制的頻率分布直方圖,其中產(chǎn)品凈重的范圍是[96,106],樣本數(shù)據(jù)分組為[96,98),[98,100),[100,102),[102,104),[104,106],已知樣本中產(chǎn)品凈重小于100克的個數(shù)是36.
![]()
(1)求樣本容量及樣本中凈重大于或等于96克并且小于102克的產(chǎn)品的個數(shù);
(2)已知這批產(chǎn)品中每個產(chǎn)品的利潤y(單位:元)與產(chǎn)品凈重x(單位:克)的關(guān)系式為
求這批產(chǎn)品平均每個的利潤.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知A,B,C是拋物線W:y2=4x上的三個點,D是x軸上一點.
(1)當(dāng)點B是W的頂點,且四邊形ABCD為正方形時,求此正方形的面積;
(2)當(dāng)點B不是W的頂點時,判斷四邊形ABCD是否可能為正方形,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校工會開展健步走活動,要求教職工上傳3月1日至3月7日微信記步數(shù)信息,下圖是職工甲和職工乙微信記步數(shù)情況:
![]()
(Ⅰ)從3月1日至3月7日中任選一天,求這一天職工甲和職工乙微信記步數(shù)都不低于10000的概率;
(Ⅱ)從3月1日至3月7日中任選兩天,記職工乙在這兩天中微信記步數(shù)不低于10000的天數(shù)為
,求
的分布列及數(shù)學(xué)期望;
(Ⅲ)如圖是校工會根據(jù)3月1日至3月7日某一天的數(shù)據(jù),制作的全校200名教職工微信記步數(shù)的頻率分布直方圖.已知這一天甲和乙微信記步數(shù)在單位200名教職工中排名分別為第68和第142,請指出這是根據(jù)哪一天的數(shù)據(jù)制作的頻率分布直方圖(不用說明理由).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為20米,圓O的半徑為1米,圓心足正方形的中心,點P、Q分別在線段AD、CB上,若線段PQ與圓O有公共點,則稱點Q在點P的“盲區(qū)”中. 已知點P以1.5米/秒的速度從A出發(fā)向D移動,同時,點Q以1米/秒的速度從C出發(fā)向B移動,則點P從A移動到D的過程中,點Q在點P的育區(qū)中的時長約為________秒(精確到0.1)
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在以P為頂點的圓錐中,母線長為
,底面圓的直徑AB長為2,O為圓心.C是圓O所在平面上一點,且AC與圓O相切.連接BC交圓于點D,連接PD,PC,E是PC的中點,連接OE,ED.
![]()
(1)求證:平面
平面PAC;
(2)若二面角
的大小為
,求面PAC與面DOE所成銳二面角的余弦值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com