已知橢圓

,過(guò)其左焦點(diǎn)且斜率為

的直線與橢圓及其準(zhǔn)線的交點(diǎn)從左到右的順序?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823124614286345.gif" style="vertical-align:middle;" />(如圖),設(shè)

.
(1)求

的解析式;
(2)求

的最值.

(1)

.
(2)

的最大值為

,當(dāng)

時(shí),取得最大值.

的最小值為

,當(dāng)

時(shí)取得最小值.
(1)設(shè)橢圓的長(zhǎng)半軸、短半軸及半焦距依次為

,則

,

,

,

橢圓的焦點(diǎn)為

,

.
故直線方程為

.
又橢圓的準(zhǔn)線方程為

,即

.

,

.
由

消去

得

.
整理得

.


.

,

恒成立,

.
又

都在直線

上,

,

,



.
又

,

,

,


,

,

.
(2)由

可知

.
又

,

.
故

的最大值為

,當(dāng)

時(shí),取得最大值.

的最小值為

,當(dāng)

時(shí)取得最小值.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
(本小題滿分13分)若橢圓

:

的離心率等于

,拋物線

:

的焦點(diǎn)在橢圓的頂點(diǎn)上。(Ⅰ)求拋物線

的方程;
(Ⅱ)求

的直線

與拋物線

交

、

兩點(diǎn),又過(guò)

、

作拋物線

的切線

、

,當(dāng)

時(shí),求直線

的方程;
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
等腰三角形的頂點(diǎn)

的坐標(biāo)是

,底邊一個(gè)端點(diǎn)

的坐標(biāo)是

,求另一個(gè)端點(diǎn)

的軌跡方程,并說(shuō)明它是什么圖形.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題

是橢圓

上異于長(zhǎng)軸端點(diǎn)的任一點(diǎn),

,

是橢圓的兩個(gè)焦點(diǎn),若

,

.求證:橢圓的離心率

.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
如圖,已知梯形

的一底邊

在平面

內(nèi),另一底邊

在平面

外,對(duì)角線交點(diǎn)

到平面

的距離為

,若

,求

到平面

的距離.

查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
如圖,給出定點(diǎn)


和直線

,

是直線

上的動(dòng)點(diǎn),

的角平分線交

于點(diǎn)

,求

的軌跡方程,并討論方程表示的曲線類型與

值的關(guān)系.

查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
已知橢圓

的中心在原點(diǎn)

,焦點(diǎn)在

軸上,右準(zhǔn)線的方程為

,傾斜角為

的直線

交橢圓

于

兩點(diǎn),且

的中點(diǎn)坐標(biāo)為

,求橢圓

的方程;
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
(本小題滿分12分) 設(shè)不等式組

表示的平面區(qū)域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823124132644200.gif" style="vertical-align:middle;" />,區(qū)域

內(nèi)的動(dòng)點(diǎn)

到直線

和直線

的距離之積為2, 記點(diǎn)

的軌跡為曲線

. 是否存在過(guò)點(diǎn)

的直線
l, 使之與曲線

交于相異兩點(diǎn)

、

,且以線段

為直徑的圓與
y軸相切?若存在,求出直線
l的斜率;若不存在, 說(shuō)明理由.
查看答案和解析>>