如圖,在四棱錐P﹣ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD=4,AB=2,M是PD的中點.
![]()
(1)求證:平面ABM⊥平面PCD;
(2)求直線CD與平面ACM所成角的正弦值;
(3)以AC的中點O為球心、AC為直徑的球交PC于點N求點N到平面ACM的距離.
(1)先證明AM⊥平面PCD;(2)
;(3)
。
【解析】
試題分析:(1)由底面ABCD是矩形,PA⊥平面ABCD,PA=AD=4,AB=2,解得BP=2
=BD
又M在PD上,且BM⊥PD,∴M為BD中點,∴AM⊥PD;
又BA⊥PA,且BA⊥AD,PA∩AD=A,∴BA⊥平面PAD,
∴BA⊥AM,
∵CD⊥AM,PD∩CD=D,∴AM⊥面PCD,
∵AM?平面ABM,
∴平面ABM⊥平面PCD。
(2)建右手系,用向量計算,
平面ACM的一個法向量是n=(2,-1,1)
所求角的正弦值為![]()
(3)由條件可得AN⊥NC,
所求距離為![]()
考點:本題主要考查立體幾何中的垂直關(guān)系,二面角的計算。
點評:中檔題,立體幾何中的垂直、平行關(guān)系,是高考常?疾榈膬(nèi)容。關(guān)于距離的計算通常有兩種思路,一是幾何法,注意“一作、二證、三計算”;二一種思路,是利用空間向量,簡化證明過程。
科目:高中數(shù)學(xué) 來源: 題型:
| 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com