【題目】如圖,
是半圓
的直徑,
是半圓
上除
、
外的一個動點(diǎn),
垂直于半圓
所在的平面,
,
,
,
.
![]()
(1)證明:平面
平面
;
(2)當(dāng)三棱錐
體積最大時,求二面角
的余弦值.
【答案】(1)見解析(2)![]()
【解析】試題分析:
(1)利用題意首先證得
平面
,然后利用面面垂直的判斷定理即可證得平面
平面
.
(2)由題意可得,當(dāng)且僅當(dāng)
時,三棱錐
體積最大,建立空間直角坐標(biāo)系可得二面角
的余弦值為
.
試題解析:
解:(1)因?yàn)?/span>
是直徑,所以
,
因?yàn)?/span>
平面
,所以
,
因?yàn)?/span>
,所以
平面
,
因?yàn)?/span>
,
,
所以四邊形
是平行四邊形,
所以
,所以
平面
,
因?yàn)?/span>
平面
,所以平面
平面
.
(2)因?yàn)?/span>
平面
,
,
所以
平面
,
,
在
中,
,
由(1)知
,
當(dāng)且僅當(dāng)
時,等號成立.
如圖所示,建立空間直角坐標(biāo)系,則
,
,
,
.
![]()
則
,
,
,
.
設(shè)平面
的一個法向量為
,
則
,即
,
∴
,取
,則
,
設(shè)平面
的一個法向量為
,
則
,即
,
∴
,取
,則
,
∴
,
∴二面角
的余弦值為
.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓心在
軸上的圓
與直線
切于點(diǎn)
.
(1)求圓
的標(biāo)準(zhǔn)方程;
(2)已知
,經(jīng)過原點(diǎn),且斜率為正數(shù)的直線
與圓
交于
兩點(diǎn).
(。┣笞C:
為定值;
(ⅱ)求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)數(shù)學(xué)老師分別用兩種不同教學(xué)方式對入學(xué)數(shù)學(xué)平均分和優(yōu)秀率都相同的甲、乙兩個高一新班(人數(shù)均為20人)進(jìn)行教學(xué)(兩班的學(xué)生學(xué)習(xí)數(shù)學(xué)勤奮程度和自覺性一致),數(shù)學(xué)期終考試成績莖葉圖如下:
![]()
(1)學(xué)校規(guī)定:成績不低于75分的為優(yōu)秀,請?zhí)顚懴旅娴?/span>
聯(lián)表,并判斷有多大把握認(rèn)為“成績優(yōu)秀與教學(xué)方式有關(guān)”.
![]()
附:參考公式及數(shù)據(jù)
![]()
(2)從兩個班數(shù)學(xué)成績不低于90分的同學(xué)中隨機(jī)抽取3名,設(shè)
為抽取成績不低于95分同學(xué)人數(shù),求
的分布列和期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某網(wǎng)站針對2015年中國好聲音歌手A,B,C三人進(jìn)行網(wǎng)上投票,結(jié)果如下
觀眾年齡 | 支持A | 支持B | 支持C |
20歲以下 | 100 | 200 | 600 |
20歲以上(含20歲) | 100 | 100 | 400 |
(1)在所有參與該活動的人中,用分層抽樣的方法抽取n人,其中有6人支持A,求n的值.
(2)在支持C的人中,用分層抽樣的方法抽取5人作為一個總體,從這5人中任意選取2人,求恰有1人在20歲以下的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,扇形AOB,圓心角AOB等于60°,半徑為2,在弧AB上有一動點(diǎn)P,過P引平行于OB的直線和OA交于點(diǎn)C,設(shè)∠AOP=θ,當(dāng)△POC面積的最大值時θ的值為___________
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,
,(其中
是自然對數(shù)的底數(shù)).
(1)
,
使得不等式
成立,試求實(shí)數(shù)
的取值范圍.
(2)若
,求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】平面內(nèi)有向量
=(1,7),
=(5,1),
=(2,1),點(diǎn)X為直線OP上的一個動點(diǎn).
(1)當(dāng)
取最小值時,求
的坐標(biāo);
(2)當(dāng)點(diǎn)X滿足(1)的條件和結(jié)論時,求cos∠AXB的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著人口老齡化的到來,我國的勞動力人口在不斷減少,“延遲退休”已經(jīng)成為人們越來越關(guān)注的話題,為了解公眾對“延遲退休”的態(tài)度,某校課外研究性學(xué)習(xí)小組在某社區(qū)隨機(jī)抽取了50人進(jìn)行調(diào)查,將調(diào)查情況進(jìn)行整理后制成下表:
年齡 | [20,25) | [25,30) | [30,35) | [35,40) | [40,45) |
人數(shù) | 4 | 5 | 8 | 5 | 3 |
年齡 | [45,50) | [50,55) | [55,60) | [60,65) | [65,70) |
人數(shù) | 6 | 7 | 3 | 5 | 4 |
經(jīng)調(diào)查年齡在[25,30),[55,60)的被調(diào)查者中贊成“延遲退休”的人數(shù)分別是3人和2人.現(xiàn)從這兩組的被調(diào)查者中各隨機(jī)選取2人,進(jìn)行跟蹤調(diào)查.
(I)求年齡在[25,30)的被調(diào)查者中選取的2人都贊成“延遲退休”的概率;
(II)若選中的4人中,不贊成“延遲退休”的人數(shù)為
,求隨機(jī)變量
的分布列和數(shù)學(xué)期望.
![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com