分析 (1)利用列舉法確定基本事件,即可求函數(shù)y=f(x)在區(qū)間[1,+∞)上是增函數(shù)的概率;
(2)方程$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1表示焦點在x軸上且離心率小于$\frac{\sqrt{3}}{2}$的橢圓,故$\left\{\begin{array}{l}{{a}^{2}>^{2}}\\{\frac{\sqrt{{a}^{2}-^{2}}}{a}<\frac{\sqrt{3}}{2}}\end{array}\right.$,化簡得$\left\{\begin{array}{l}{a>b}\\{a<2b}\end{array}\right.$,又a∈[1,5],b∈[2,4],畫出滿足不等式組的平面區(qū)域,利用面積比,即可求方程$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1表示焦點在x軸上且離心率小于$\frac{\sqrt{3}}{2}$的橢圓的概率.
解答 解:(1)∵函數(shù)f(x)=ax2-4bx+1的圖象的對稱軸為直線x=$\frac{2b}{a}$,要使f(x)=ax2-4bx+1在區(qū)間[1,+∞)上為增函數(shù),當且僅當a>0且$\frac{2b}{a}$≤1,即2b≤a.…(2分)
若a=1,則b=-1;
若a=2,則b=-1或1;
若a=3,則b=-1或1.
∴事件包含基本事件的個數(shù)是1+2+2=5.…(4分)
而滿足條件的數(shù)對(a,b)共有3×5=15個
∴所求事件的概率為$\frac{5}{15}$=$\frac{1}{3}$.…(6分)
(2)方程$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1表示焦點在x軸上且離心率小于$\frac{\sqrt{3}}{2}$的橢圓,故$\left\{\begin{array}{l}{{a}^{2}>^{2}}\\{\frac{\sqrt{{a}^{2}-^{2}}}{a}<\frac{\sqrt{3}}{2}}\end{array}\right.$…(8分)
化簡得$\left\{\begin{array}{l}{a>b}\\{a<2b}\end{array}\right.$
又a∈[1,5],b∈[2,4],畫出滿足不等式組的平面區(qū)域,如圖陰影部分所示,
…(10分)
陰影部分的面積為$\frac{15}{4}$,故所求的概率P=$\frac{15}{32}$.…(12分)
點評 本題考查概率的計算,考查學生的計算能力,區(qū)分兩種類型是關鍵.
科目:高中數(shù)學 來源: 題型:選擇題
| A. | $\frac{1}{2}$ | B. | $\frac{{\sqrt{2}}}{2}$ | C. | $-\frac{{\sqrt{2}}}{2}$ | D. | $-\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | 坐標原點對稱 | B. | x軸對稱 | C. | y軸對稱 | D. | 直線y=x對稱 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com