設(shè)點P(x,y)在橢圓
+
=1上移動,則x+y的最大值等于
.
考點:橢圓的參數(shù)方程,三角函數(shù)的最值
專題:坐標系和參數(shù)方程
分析:化橢圓方程為參數(shù)方程可得
,可得x+y=3cosθ+2sinθ=
sin(θ+φ),可得最值.
解答:
解:化橢圓
+
=1為參數(shù)方程
,
∴x+y=3cosθ+2sinθ=
sin(θ+φ),其中tanφ=
,
∴x+y的最大值等于
故答案為:
點評:本題考查橢圓的參數(shù)方程,涉及三角函數(shù)的最值,屬基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:
題型:

如圖所示,四棱錐P-ABCD,底面四邊形ABCD是正方形,側(cè)面PCD是邊長為a的正三角形,且平面PCD⊥底面ABCD,E為PC的中點.
(1)求異面直線PA與DE所成角的余弦值;
(2)求AP與平面ABCD所成的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
函數(shù)f(x)=8
x與f(x)=0.3
x(x∈R)的圖象都經(jīng)過點
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
在△ABC中,角A,B,C的對邊分別為a,b,c,且c=
+
,C=30°,求a+b的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:

正方形ABCD所在平面與平面四邊形ABEF所在平面互相垂直,△ABE是等腰直角三角形,AB=AE,F(xiàn)A=FE,∠AEF=45°
(Ⅰ)求證:EF⊥平面BCE;
(Ⅱ)設(shè)線段CD的中點為P,在直線AE上是否存在一點M,使得PM∥平面BCE?若存在,請指出點M的位置,并證明你的結(jié)論;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:

如圖,已知正三棱柱ABC-A
1B
1C
1的各棱長都為a,P為A
1B上的點.
(1)試確定
的值,使得PC⊥AB;
(2在直線A
1B上找一點P使二面角P-AC-B的大小為60°,求
的值;
(3)在(2)條件下,求C
1到平面PAC的距離.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知三角形的三個頂點分別是A(-5,0),B(3,-3),C(0,2)
(1)求△ABC的面積,
(2)若直線l過點C且與A、B的距離相等,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
點(1,0,4)在空間直角坐標系中的位置是( 。
| A、y軸上 |
| B、xOy平面上 |
| C、xOz平面上 |
| D、yOz平面上 |
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
若函數(shù)f(x)=x3+ax2+(a+6)x+1有極大值和極小值,則實數(shù)a的取值范圍是( )
| A、(-1,2) |
| B、(-∞,-3)∪(6,+∞) |
| C、(-3,6) |
| D、(-∞,-1)∪(2,+∞) |
查看答案和解析>>