【題目】已知函數(shù)f(x)=
.
(I)求f(x)在區(qū)間[1,a](a>1)上的最小值;
(II)若關(guān)于x的不等式f2(x)+mf(x)>0只有兩個(gè)整數(shù)解,求實(shí)數(shù)m的取值范圍.
【答案】.(1)當(dāng)1<a≤2時(shí),f(x)的最小值為f(1)=ln2;當(dāng)a>2,f(x)的最小值為f(a)=
;(2)(-ln2,-
ln6]
【解析】試題分析:(1)求出
,在定義域內(nèi),分別令
求得
的范圍,可得函數(shù)
增區(qū)間,
求得
的范圍,可得函數(shù)
的減區(qū)間;利用函數(shù)的單調(diào)性求出極值,與區(qū)間端點(diǎn)值的函數(shù)值比較大小可得結(jié)果;(2)
時(shí),整數(shù)解有無(wú)數(shù)多個(gè),不合題意
時(shí),整數(shù)解有無(wú)數(shù)多個(gè),不合題意;
時(shí),不等式
有兩整數(shù)解,則
.
試題解析:(1)f '(x)=
,令f '(x)>0得f(x)的遞增區(qū)間為(0,
);
令f '(x)<0得f(x)的遞減區(qū)間為(
,+
),
∵x∈[l,a],則當(dāng)1<a≤
時(shí),f(x)在[1,a]上為增函數(shù),f(x)的最小值為
f(1)=ln2; . . . . . . . . . . . 3分
當(dāng)a>
時(shí),f(x)在[1,
)上為增函數(shù),在(
,a]上為減函數(shù),f(2)=
=ln2=f(1),
∴若
<a≤2,f(x)的最小值為f(1)=ln2,
若a>2,f(x)的最小值為f(a)=
,
綜上,當(dāng)1<a≤2時(shí),f(x)的最小值為f(1)=ln2;
當(dāng)a>2,f(x)的最小值為f(a)=
.
(2)由(1)知,f(x)的遞增區(qū)間為(0,
),遞減區(qū)間為(
,+∞),且在(
,+
)上ln2x>lne=1>0,又x>0,則f(x)>0. 又f(
)=0.
∴m>0時(shí),由不等式f2(x)+mf(x)>0得f(x)>0或f(x)<-m,而f(x)>0解集為(
,+
),整數(shù)解有無(wú)數(shù)多個(gè),不合題意;
m=0時(shí),由不等式f2(x)+mf(x)>0得f(x)≠0,解集為(0,
)
(
,+∞),整數(shù)解有無(wú)數(shù)多個(gè),不合題意; . . . . . 10分
m<0時(shí),由不等式f2(x)+mf(x)>0得f(x)>-m或f(x)<0,∵f(x)<0解集為(0,
)無(wú)整數(shù)解,若不等式f2(x)+mf(x)>0有兩整數(shù)解,則f(3)≤-m<f(1)=f(2),
∴-ln2<m≤-
ln6
綜上,實(shí)數(shù)m的取值范圍是(-ln2,-
ln6]
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知四棱錐
的底面為平行四邊形,且
,
,
分別為
中點(diǎn),過(guò)
作平面
分別與線段
相交于點(diǎn)
.
![]()
(Ⅰ)在圖中作出平面
使面
‖
(不要求證明);
(II)若
,在(Ⅰ)的條件下求多面體
的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】燕山公園計(jì)劃改造一塊四邊形區(qū)域
鋪設(shè)草坪,其中
百米,
百米,
,
,草坪內(nèi)需要規(guī)劃4條人行道
以及兩條排水溝
,其中
分別為邊
的中點(diǎn).
![]()
(1)若
,求排水溝
的長(zhǎng);
(2)當(dāng)
變化時(shí),求
條人行道總長(zhǎng)度的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)舉行購(gòu)物抽獎(jiǎng)活動(dòng),抽獎(jiǎng)箱中放有編號(hào)分別為
的五個(gè)小球.小球除編號(hào)不同外,其余均相同.活動(dòng)規(guī)則如下:從抽獎(jiǎng)箱中隨機(jī)抽取一球,若抽到的小球編號(hào)為
,則獲得獎(jiǎng)金
元;若抽到的小球編號(hào)為偶數(shù),則獲得獎(jiǎng)金
元;若抽到其余編號(hào)的小球,則不中獎(jiǎng).現(xiàn)某顧客依次有放回的抽獎(jiǎng)兩次.
(1)求該顧客兩次抽獎(jiǎng)后都沒(méi)有中獎(jiǎng)的概率;
(2)求該顧客兩次抽獎(jiǎng)后獲得獎(jiǎng)金之和為
元的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在直角坐標(biāo)系xOy中,圓C的參數(shù)方程為
為參數(shù)
,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為
.
1
求圓C的普通方程和直線l的直角坐標(biāo)方程;
2
設(shè)M是直線l上任意一點(diǎn),過(guò)M做圓C切線,切點(diǎn)為A、B,求四邊形AMBC面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】盒中共有9個(gè)球,其中有4個(gè)紅球、3個(gè)黃球和2個(gè)綠球,這些球除顏色外完全相同.
(1)從盒中一次隨機(jī)取出2個(gè)球,求取出的2個(gè)球的顏色相同的概率P;
(2)從盒中一次隨機(jī)取出4個(gè)球,其中紅球、黃球、綠球的個(gè)數(shù)分別記為x1,x2,x3,隨機(jī)變量X表示x1,x2,x3中的最大數(shù),求X的概率分布和數(shù)學(xué)期望E(X).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
的部分圖象如圖所示,則下列判斷正確的是( )
![]()
A. 函數(shù)的圖象關(guān)于點(diǎn)
對(duì)稱
B. 函數(shù)的圖象關(guān)于直線
對(duì)稱
C. 函數(shù)
的最小正周期為![]()
D. 當(dāng)
時(shí),函數(shù)
的圖象與直線
圍成的封閉圖形面積為![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了調(diào)查甲、乙兩個(gè)網(wǎng)站受歡迎的程度,隨機(jī)選取了14天,統(tǒng)計(jì)上午8:00-10:00間各自的點(diǎn)擊量:
甲:73,24,58,72,64,38,66,70,20,41,55,67,8,25
乙:12,37,21,5,54,42,61,45,19,6,71,36,42,14
(1)請(qǐng)用莖葉圖表示上面的數(shù)據(jù).
![]()
(2)甲網(wǎng)站點(diǎn)擊量在[10,40]間的頻率是多少?
(3)甲、乙兩個(gè)網(wǎng)站哪個(gè)更受歡迎?并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知向量
,函數(shù)
,且
圖象上一個(gè)最高點(diǎn)為
與
最近的一個(gè)最低點(diǎn)的坐標(biāo)為
.
(Ⅰ)求函數(shù)
的解析式;
(Ⅱ)設(shè)
為常數(shù),判斷方程
在區(qū)間
上的解的個(gè)數(shù);
(Ⅲ)在銳角
中,若
,求
的取值范圍.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com