欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

6.將正整數(shù)12分解成兩個(gè)正整數(shù)的乘積有1×12,2×6,3×4三種,其中3×4是三種分解中,兩數(shù)差的絕對(duì)值最小的,我們稱3×4為12的最佳分解.當(dāng)p×q(p≤q且p,q∈N*)是正整數(shù)n的最佳分解時(shí),我們規(guī)定函數(shù)f(n)=$\frac{p}{q}$,例如f(12)=$\frac{3}{4}$,則關(guān)于函數(shù)f(n)有下列敘述:①f(24)=$\frac{3}{2}$;②f(144)=$\frac{9}{16}$;   ③f(13)=$\frac{1}{13}$; ④f(28)=$\frac{4}{7}$.
其中正確的有③④.

分析 將各個(gè)數(shù)的分解因式寫出,利用f(n)的定義求出求出各個(gè)f(n),從而判斷出各命題的正誤.

解答 解:①,因?yàn)?4=1×24;  24=2×12;  24=3×8;  24=4×6,所以f(24)=$\frac{4}{6}$=$\frac{2}{3}$,故①錯(cuò)誤,
②,因?yàn)?44=1×144,144=2×72,144=3×48,144=12×12,144=9×16所以f(144)=$\frac{12}{12}$=1,故②錯(cuò),
③,因?yàn)?3=1×13,13=13×1,所以f(13)=$\frac{1}{13}$,正確,故③正確,
④,因?yàn)?8=1×28,28=2×14,28=4×7,所以f(28)=$\frac{4}{7}$.故④正確,
故答案為:③④

點(diǎn)評(píng) 本題考查命題的真假判斷,考查新定義的理解和應(yīng)用,將各個(gè)數(shù)的分解因式寫出進(jìn)行求解是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.設(shè)函數(shù)f(x)=x-m(x+1)ln(x+1),其中m>0.
(Ⅰ)求f(x)的極大值;
(Ⅱ)當(dāng)m=1時(shí),若直線y=2t與函數(shù)f(x)在[-$\frac{1}{2}$,1]上的圖象有交點(diǎn),求實(shí)數(shù)t的取值范圍;
(Ⅲ)當(dāng)a>b>0時(shí),試證明:(1+a)b<(1+b)a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.若函數(shù)f(x)=x3-3bx+c在區(qū)間(0,1)內(nèi)有極小值,則( 。
A.b>0B.b<1C.0<b<1D.b>1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.設(shè)函數(shù)f(x)=x3+ax2+b(a,b∈R),當(dāng)x=$\frac{4}{3}$時(shí),f(x)取極小值0,則實(shí)數(shù)b=$\frac{32}{27}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.i+2i2+3i3=-2-2i.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)集合M={x|x2-2x-3<0},N={x|x<1},則M∩∁RN等于(  )
A.[-1,1]B.(-1,0)C.[1,3)D.(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.下列說法正確的是( 。
A.一個(gè)命題的逆命題為真,則它的逆否命題一定為真
B.“?x∈R,x3-x2+1≤0”的否定是“?x∈R,x3-x2+1>0”
C.命題“若a2+b2=0,則a,b全為0”的逆否命題是“若a,b全不為0,則a2+b2≠0”
D.若命題“¬p”與“p或q”都是真命題,則命題q一定是真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.下列函數(shù)中x=0是極值點(diǎn)的函數(shù)是( 。
A.f(x)=|x|B.f(x)=-x3C.f(x)=sinx-xD.f(x)=$\frac{1}{{x}^{2}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知函數(shù)f(x)=(sinx+cosx)cosx,則f(x)的最大值是$\frac{\sqrt{2}+1}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案