(本題12分)
如圖,在直四棱柱ABCD-A
B
C
D
中,底面ABCD為等腰梯形,AB//CD,AB=4, BC=CD=2, AA
=2, E、E
、F分別是棱AD、AA
、AB的中點(diǎn)。
(I)證明:直線EE
//平面FCC
;
(II)求二面角B-FC
-C的余弦值。
(本小題滿分12分)
解:(1)因?yàn)锳B=4, BC=CD=2, F是棱AB的中點(diǎn),
所以BF=BC=CF,△BCF為正三角形, 因?yàn)锳BCD為
等腰梯形,所以∠BAC=∠ABC=60°,取AF的中點(diǎn)M,
連接DM,則DM⊥AB,所以DM⊥CD,
以DM為x軸,DC為y軸,DD1為
z軸建立空間直角坐標(biāo)系,… …………… ………1分
,則D(0,0,0),A(
,-1,0),F(
,1,0),C(0,2,0),
C1(0,2,2),E(
,
,0),E1(
,-1,1), ………… …… ………2分
所以
,
,![]()
設(shè)平面CC1F的法向量為
則
所以
取
, …… ……………4分
則
,所以
,
所以直線EE
//平面FCC
. ………… …………… …… …………………6分
(2)
,設(shè)平面BFC1的法向量為
,則
所以
,取
,……… …… ……………………8分
則
,
,
,
所以
,… …… …………………………10分
由圖可知二面角B-FC
-C為銳角,所以二面角B-FC
-C的余弦值為
. ……12分
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2014屆浙江省高二9月質(zhì)量檢測(cè)文科數(shù)學(xué)試卷(解析版) 題型:解答題
(本題12分)如圖,在側(cè)棱錐垂直底面的四棱錐ABCD-A1B1C1D1中,AD∥BC,
AD⊥AB,AB=
。AD=2,BC=4,AA1=2,E是DD1的中點(diǎn),F(xiàn)是平面B1C1E
與直線AA1的交點(diǎn)。
(1)證明:(i)EF∥A1D1;
(ii)BA1⊥平面B1C1EF;
(2)求BC1與平面B1C1EF所成的角的正弦值。
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆廣東省高二文科數(shù)學(xué)競(jìng)賽試卷(解析版) 題型:解答題
(本題12分)如圖所示,在直四棱柱
中,
,點(diǎn)
是棱
上一點(diǎn).
![]()
(1)求證:
面
;
(2)求證:
;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年廣東省高三全真模擬考試數(shù)學(xué)文卷 題型:解答題
((本題12分)如圖所示,在直四棱柱
中,
,點(diǎn)
是棱
上一點(diǎn)
(1)求證:
面
;
(2)求證:
;
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012年山東省濟(jì)寧市高二上學(xué)期期中考試文科數(shù)學(xué) 題型:解答題
(本題12分)如圖1,在直角梯形ABCD中,∠ADC=90°,CD∥AB,AB=4,AD=CD=2,M為線段AB的中點(diǎn),將△ACD沿
折起,使平面ACD⊥平面ABC,得到幾何體D-ABC,如圖2所示.
(Ⅰ)求證:BC⊥平面ACD;
(Ⅱ)求二面角A-CD-M的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆四川省巴中市四縣中高二上學(xué)期期末考試?yán)砜茢?shù)學(xué) 題型:解答題
((本題12分)如圖2,在棱長(zhǎng)為1的正方體ABCD—A1B1C1D1中,點(diǎn)E、F、G分別是DD1、BD、BB1的中點(diǎn)。
(Ⅰ)求直線EF與直線CG所成角的余弦值;
(Ⅱ)求直線C1C與平面GFC所成角的正弦值;
(Ⅲ)求二面角E—FC—B的余弦值。
![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com