已知函數(shù)
,
且
。
(Ⅰ)求
的值;
(Ⅱ)判斷并證明函數(shù)
在區(qū)間
上的單調(diào)性.
(Ⅰ)
(Ⅱ)單調(diào)遞增
解析試題分析:(Ⅰ)利用
得出
的關(guān)系,再根據(jù)
得出
的值,屬于待定系數(shù)法;
(Ⅱ)利用單調(diào)性的定義取值--作差--定號(hào)--判斷,證明.
試題解析:(Ⅰ)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/d0/3/wkyq63.png" style="vertical-align:middle;" />,
,由
,
,又
,
,
,
.(5分)
(Ⅱ)由(1)得
,函數(shù)在
單調(diào)遞增。
證明:任取
且
,![]()
(8分)
,
(10分)
即
,故函數(shù)
在
上單調(diào)遞增 (12分)
考點(diǎn):如何求參數(shù),單調(diào)性的證明.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)f(x)=log4(4x+1)+kx(k∈R)是偶函數(shù).
(1)求k的值;
(2)探究函數(shù)f(x)=ax+
(a、b是正常數(shù))在區(qū)間
和
上的單調(diào)性(只需寫(xiě)出結(jié)論,不要求證明).并利用所得結(jié)論,求使方程f(x)-log4m=0有解的m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/ca/2/sl6je1.png" style="vertical-align:middle;" />,
(1)求
;
(2)若
,且
,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分14分)已知函數(shù)
.
(l)求
的單調(diào)區(qū)間和極值;
(2)若對(duì)任意
恒成立,求實(shí)數(shù)m的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
和
的圖象關(guān)于
軸對(duì)稱(chēng),且
.
(1)求函數(shù)
的解析式;
(2)解不等式
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知定義域?yàn)镽的函數(shù)
是奇函數(shù).
(Ⅰ)求a的值;
(Ⅱ)判斷
的單調(diào)性并證明;
(Ⅲ)若對(duì)任意的
,不等式
恒成立,求
的取值范圍.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com