【題目】在平面直角坐標(biāo)系
中,點(diǎn)
,若在曲線
上存在點(diǎn)
使得
,則實(shí)數(shù)
的取值范圍為__________
【答案】![]()
【解析】
根據(jù)題意,設(shè)P(x,y),分析可得若|PB|=2|PA|,則有(x﹣4)2+y2=4(x﹣1)2+4y2,變形可得x2+y2=4,進(jìn)而可得P的軌跡為以O為圓心,半徑為2的圓;將曲線C的方程變形為(x﹣a)2+(y﹣2a)2=9,可得以(a,2a)為圓心,半徑為3的圓;據(jù)此分析可得若曲線C上存在點(diǎn)P使得|PB|=2|PA|,則圓C與圓x2+y2=4有公共點(diǎn),由圓與圓的位置關(guān)系可得3﹣2
2+3,解可得a的取值范圍,即可得答案.
根據(jù)題意,設(shè)P(x,y),
若|PB|=2|PA|,即|PB|2=4|PA|2,則有(x﹣4)2+y2=4(x﹣1)2+4y2,
變形可得:x2+y2=4,
即P的軌跡為以O為圓心,半徑為2的圓,
曲線Cx2﹣2ax+y2﹣4ay+5a2﹣9=0,即(x﹣a)2+(y﹣2a)2=9,則曲線C是以(a,2a)為圓心,半徑為3的圓;
若曲線C上存在點(diǎn)P使得|PB|=2|PA|,則圓C與圓x2+y2=4有公共點(diǎn),
則有3﹣2
2+3,即1
|a|≤5,
解可得:
a
或
a
,
即a的取值范圍為:[
,
]∪[
,
];
故答案為:[
,
]∪[
,
].
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓
的兩個(gè)焦點(diǎn)與短軸的一個(gè)端點(diǎn)是等邊三角形的三個(gè)頂點(diǎn),且長(zhǎng)軸長(zhǎng)為4.
(Ⅰ)求橢圓
的方程;
(Ⅱ)若
是橢圓
的左頂點(diǎn),經(jīng)過(guò)左焦點(diǎn)
的直線
與橢圓
交于
,
兩點(diǎn),求
與
的面積之差的絕對(duì)值的最大值.(
為坐標(biāo)原點(diǎn))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知圓心在
軸上的圓
經(jīng)過(guò)兩點(diǎn)
和
,直線
的方程為
.
(1)求圓
的方程;
(2)當(dāng)
時(shí),
為直線
上的定點(diǎn),若圓
上存在唯一一點(diǎn)
滿足
,求定點(diǎn)
的坐標(biāo);
(3)設(shè)點(diǎn)A,B為圓
上任意兩個(gè)不同的點(diǎn),若以AB為直徑的圓與直線
都沒(méi)有公共點(diǎn),求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某企業(yè)生產(chǎn)甲、乙兩種產(chǎn)品,銷售利潤(rùn)分別為2千元/件、1千元/件.甲、乙兩種產(chǎn)品都需要在
兩種設(shè)備上加工,生產(chǎn)一件甲產(chǎn)品需用
設(shè)備2小時(shí),
設(shè)備6小時(shí);生產(chǎn)一件乙產(chǎn)品需用
設(shè)備3小時(shí),
設(shè)備1小時(shí).
兩種設(shè)備每月可使用時(shí)間數(shù)分別為480小時(shí)、960小時(shí),若生產(chǎn)的產(chǎn)品都能及時(shí)售出,則該企業(yè)每月利潤(rùn)的最大值為( )
A. 320千元 B. 360千元 C. 400千元 D. 440千元
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列事件是隨機(jī)事件的是( 。
①當(dāng)x>10時(shí),
; ②當(dāng)x∈R,x2+x=0有解
③當(dāng)a∈R關(guān)于x的方程x2+a=0在實(shí)數(shù)集內(nèi)有解; ④當(dāng)sinα>sinβ時(shí),α>β( )
A.①②B.②③C.③④D.①④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在對(duì)人們的休閑方式的一次調(diào)查中,用簡(jiǎn)單隨機(jī)抽樣方法調(diào)查了125人,其中女性70人,男性55人.女性中有40人主要的休閑方式是看電視,另外30人主要的休閑方式是運(yùn)動(dòng);男性中有20人主要的休閑方式是看電視,另外35人主要的休閑方式是運(yùn)動(dòng).
(1)根據(jù)以上數(shù)據(jù)建立一個(gè)
列聯(lián)表;
(2)能否在犯錯(cuò)誤的概率不超過(guò)0.025的前提下,認(rèn)為性別與休閑方式有關(guān)系?
(3)在休閑方式為看電視的人中按分層抽樣方法抽取6人參加某機(jī)構(gòu)組織的健康講座,講座結(jié)束后再?gòu)倪@6人中抽取2人作反饋交流,求參加交流的恰好為2位女性的概率.
附:
P( | 0.05 | 0.025 | 0.010 |
k | 3.841 | 5.024 | 6.635 |
![]()
休閑方式 性別 | 看電視 | 運(yùn)動(dòng) | 合計(jì) |
女 | |||
男 | |||
合計(jì) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在某區(qū)“創(chuàng)文明城區(qū)”(簡(jiǎn)稱“創(chuàng)城”)活動(dòng)中,教委對(duì)本區(qū)
四所高中學(xué)校按各校人數(shù)分層抽樣,隨機(jī)抽查了100人,將調(diào)查情況進(jìn)行整理后制成下表:
學(xué)校 |
|
|
|
|
抽查人數(shù) | 50 | 15 | 10 | 25 |
“創(chuàng)城”活動(dòng)中參與的人數(shù) | 40 | 10 | 9 | 15 |
(注:參與率是指:一所學(xué)!皠(chuàng)城”活動(dòng)中參與的人數(shù)與被抽查人數(shù)的比值)假設(shè)每名高中學(xué)生是否參與”創(chuàng)城”活動(dòng)是相互獨(dú)立的.
(1)若該區(qū)共2000名高中學(xué)生,估計(jì)
學(xué)校參與“創(chuàng)城”活動(dòng)的人數(shù);
(2)在隨機(jī)抽查的100名高中學(xué)生中,隨機(jī)抽取1名學(xué)生,求恰好該生沒(méi)有參與“創(chuàng)城”活動(dòng)的概率;
(3)在上表中從
兩校沒(méi)有參與“創(chuàng)城”活動(dòng)的同學(xué)中隨機(jī)抽取2人,求恰好
兩校各有1人沒(méi)有參與“創(chuàng)城”活動(dòng)的概率是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)正項(xiàng)數(shù)列
的前
項(xiàng)和為
,且滿足:
,
,
.
(Ⅰ)求數(shù)列
的通項(xiàng)公式;
(Ⅱ)若正項(xiàng)等比數(shù)列
滿足
,
,且
,數(shù)列
的前
項(xiàng)和為
,若對(duì)任意
,均有
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com