分析 (1)直接利用等差數(shù)列的通項公式即得結(jié)論;
(2)通過(1)裂項可知$\frac{1}{_{n}^{2}}$=$\frac{1}{4}$($\frac{1}{4n-3}$-$\frac{1}{4n+1}$),進而并項相加即得結(jié)論.
解答 解:(1)∵an+1=4+an,且a1=1,
∴an=1+4(n-1)=4n-3;
(2)由(1)可知${_{n}}^{2}$=anan+1=(4n-3)(4n+1),
∴$\frac{1}{_{n}^{2}}$=$\frac{1}{(4n-3)(4n+1)}$=$\frac{1}{4}$($\frac{1}{4n-3}$-$\frac{1}{4n+1}$),
∴Tn=$\frac{1}{4}$(1-$\frac{1}{5}$+$\frac{1}{5}$-$\frac{1}{9}$+…+$\frac{1}{4n-3}$-$\frac{1}{4n+1}$)
=$\frac{1}{4}$(1-$\frac{1}{4n+1}$)
=$\frac{n}{4n+1}$.
點評 本題考查數(shù)列的通項及前n項和,考查裂項相消法,注意解題方法的積累,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | ①②③ | B. | ①③④ | C. | ②③④ | D. | ③④ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 等腰直角三角形 | B. | 等腰三角形 | C. | 直角三角形 | D. | 等邊三角形 |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com