(本題16分)在平面直角坐標(biāo)系
中,
是拋物線
的焦點(diǎn),
是拋物線
上位于第一象限內(nèi)的任意一點(diǎn),過
三點(diǎn)的圓的圓心為
,點(diǎn)
到拋物線
的準(zhǔn)線的距離為
.
(Ⅰ)求拋物線
的方程;
(Ⅱ)是否存在點(diǎn)
,使得直線
與拋物線
相切于點(diǎn)
?若存在,求出點(diǎn)
的坐標(biāo);若不存在,說明理由;
(Ⅲ)若點(diǎn)
的橫坐標(biāo)為
,直線
與拋物線
有兩個(gè)不同的交點(diǎn)
,
與圓
有兩個(gè)不同的交點(diǎn)
,求當(dāng)
時(shí),
的最小值.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓
:
(
)的短軸長與焦距相等,且過定點(diǎn)
,傾斜角為
的直線
交橢圓
于
、
兩點(diǎn).
(Ⅰ)求橢圓
的方程;
(Ⅱ)確定直線
在
軸上截距的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知雙曲線C的中心在原點(diǎn),拋物線
的焦點(diǎn)是雙曲線C的一個(gè)焦點(diǎn),且雙曲線經(jīng)過點(diǎn)
,又知直線
與雙曲線C相交于A、B兩點(diǎn).
(1)求雙曲線C的方程;
(2)若
,求實(shí)數(shù)k值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(12分)如圖,已知橢圓
(a>b>0)的離心率
,過點(diǎn)
和
的直線與原點(diǎn)的距離為
.![]()
(1)求橢圓的方程;
(2)已知定點(diǎn)
,若直線
與橢圓交于
、
兩 點(diǎn).問:是否存在
的值,
使以
為直徑的圓過
點(diǎn)?請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)已知橢圓的中心在原點(diǎn),焦點(diǎn)在
軸上,離心率為
,且經(jīng)過點(diǎn)
,直線
交橢圓于不同的兩點(diǎn)
.
(1)求橢圓的方程;
(2)求
的取值范圍;
(3)若直線
不過點(diǎn)
,求證:直線
與
軸圍成一個(gè)等腰三角形.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)(文科)已知曲線![]()
的離心率
,直線
過
、
兩點(diǎn),原點(diǎn)
到
的距離是
.
(Ⅰ)求雙曲線的方程;
(Ⅱ)過點(diǎn)
作直線
交雙曲線于
兩點(diǎn),若
,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分13分)已知雙曲線
的右焦點(diǎn)與拋物線
的焦點(diǎn)重合,求該雙曲線的焦點(diǎn)到其漸近線的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)
已知橢圓
的離心率為
,其中左焦點(diǎn)F(-2,0).
(1) 求橢圓C的方程;
(2) 若直線y=x+m與橢圓C交于不同的兩點(diǎn)A,B,且線段AB的中點(diǎn)M在圓x2+y2=1上,
求m的值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com