設f(x)=ax3+bx+c(a≠0)為奇函數(shù),其圖象在點(1,f(1))處的切線與直線x-6y-7=0垂直,導函數(shù)f′(x)的最小值為-12.
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)f(x)的單調(diào)增區(qū)間,并求函數(shù)f(x)在[-1,3]上的最大值和最小值.
(1)
;(2)
、![]()
解析試題分析:(1)根據(jù)
為奇函數(shù)可得
。由導數(shù)的幾何意義可得
,
的最小值可求
,從而可得
的解析式。(2)先求導,在令導數(shù)大于0得增區(qū)間,令導數(shù)小于零得減區(qū)間,從而求得在
上的極值。再求兩端點處函數(shù)值,比較極值與端點處函數(shù)值最小的為最小值,最大的為最大值。
試題解析:
解:(1)∵
為奇函數(shù),∴
1分
即
,∴
. 2分
又
的最小值為
,∴.
4分
由題設知
,∴
,
故
6分
(2)
7分
當
變化時,
、
的變化情況表如下:![]()
∴函數(shù)
的單調(diào)遞增區(qū)間為
和
8分
∵
,極小值
,極大值
,
當
時,
;當
時,
. 10分
考點:1求導;2導數(shù)的幾何意義;3用導數(shù)求函數(shù)的極值和最值。
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)
,其中a為常數(shù).
(1)當
時,求
的最大值;
(2)若
在區(qū)間(0,e]上的最大值為
,求a的值;
(3)當
時,試推斷方程
=
是否有實數(shù)解.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知數(shù)列
的前
項和為
,對一切正整數(shù)
,點
都在函數(shù)
的圖像上,且過點
的切線的斜率為
.
(1)求數(shù)列
的通項公式;
(2)設
,等差數(shù)列
的任一項
,其中
是
中所有元素的最小數(shù),
,求
的通項公式.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設函數(shù)
.
(1)若
,求函數(shù)
的單調(diào)區(qū)間;
(2)若函數(shù)
在區(qū)間
上是減函數(shù),求實數(shù)
的取值范圍;
(3)過坐標原點
作曲線
的切線,證明:切點的橫坐標為
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)
處取得極值2
(1)求函數(shù)
的表達式;
(2)當
滿足什么條件時,函數(shù)
在區(qū)間
上單調(diào)遞增?
(3)若
為
圖象上任意一點,直線與
的圖象相切于點P,求直線的斜率
的取值范圍
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)
在
處的切線方程為
.
(1)求函數(shù)
的解析式;
(2)若關于
的方程
恰有兩個不同的實根,求實數(shù)
的值;
(3)數(shù)列
滿足
,
,求
的整數(shù)部分.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com