在平面直角坐標(biāo)系
中,以
為始邊,角
的終邊與單位圓
的交點(diǎn)
在第一象限,已知
.
(1)若
,求
的值;
(2)若
點(diǎn)橫坐標(biāo)為
,求
.
(1)
;(2)
.
【解析】
試題分析:(1)解法一是利用
結(jié)合平面向量的數(shù)量積得到
與
的等量關(guān)系,從而求出
的值;解法二是將
轉(zhuǎn)化為兩直線
、
的斜率之間的關(guān)系,進(jìn)而求出
的值;(2)設(shè)
,利用三角函數(shù)的定義求出
和
的值,然后利用兩角差的正弦公式求出
的值,最后利用三角行的面積公式求出
的面積;解法二是利用平面向量的數(shù)量積計(jì)算出
,然后計(jì)算出
的值,最后利用三角形的面積公式計(jì)算出
的面積.
試題解析:(1)解法1:由題可知:
,
![]()
即
,![]()
,得![]()
∴
則![]()
解法2:由題可知:
,
![]()
,![]()
∵
,∴![]()
,得
;
(2)解法1:由(1)
,記
,
![]()
∴
,![]()
∵
,得![]()
![]()
∴![]()
![]()
解法2:
即
,
即:
,
,
,
![]()
∴![]()
則
.
考點(diǎn):1.平面向量的數(shù)量積;2.兩角差的正弦公式;3.同角三角函數(shù)的基本關(guān)系;4.三角函數(shù)的面積公式
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
| π | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
| π |
| 2 |
| 3π |
| 2 |
| AC |
| BC |
| π |
| 2 |
| 2 |
| 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com