分析 (1)根據(jù)條件和等差數(shù)列的通項(xiàng)公式列出方程,求出a1的值,代入等差數(shù)列的前n和項(xiàng)公式求出Sn;
(2)根據(jù)條件和等比數(shù)列的通項(xiàng)公式列出方程組,求出a1和q的值,代入等比數(shù)列的前n和項(xiàng)公式求出S10.
解答 解:(1)∵d=2,n=15,an=-10,
∴an=a1+(n-1)d=a1+14×2=-10,
解得a1=-38,
∴Sn=$\frac{n({a}_{1}+{a}_{n})}{2}$=$\frac{15×(-48)}{2}$=-360; …(5分)
(2)∵a2+a3=6,a3+a4=12,
∴$\left\{\begin{array}{l}{{a}_{1}q+{a}_{1}{q}^{2}=6}\\{{a}_{1}{q}^{2}+{a}_{1}{q}^{3}=12}\end{array}\right.$,解得a1=1,q=2,
∴S10=$\frac{{a}_{1}(1-{q}^{10})}{1-q}$=$\frac{1-{2}^{10}}{1-2}$=1023…(10分)
點(diǎn)評(píng) 本題考查了等差數(shù)列(等比數(shù)列)的通項(xiàng)公式、前n和項(xiàng)公式 的應(yīng)用,考查方程思想,化簡(jiǎn)、計(jì)算能力.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 命題“若α=β,則tanα=tanβ”的逆否命題為假命題 | |
| B. | “x>1”是“x2-1>0”的必要不充分條件 | |
| C. | “m>0>n”是“$\frac{1}{m}$>$\frac{1}{|n|}$”的充分不必要條件 | |
| D. | 命題“?a>1,a2+2a-3<0”的否定是:“?a≤1,a2+2a-3≥0” |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | f(x)=x2+1 | B. | f(x)=|x+1| | C. | f(x)=x3+1 | D. | f(x)=x+$\frac{1}{x}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | a<-1 | B. | -1<a<0 | C. | $-1<a≤-\frac{1}{2}$ | D. | $-1<a≤-\frac{2}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com