分析 (I)利用已知條件得到||x-1|-2|<1,通過去掉絕對值符號,轉(zhuǎn)化求解不等式的解集即可.
(Ⅱ)已知條件轉(zhuǎn)化為:只需要g(x)max≥f(x)min,求出f(x))的最小值,g(x)的最大值,即可求解實數(shù)a的取值范圍.
解答 解:(I)由|g(x)|<1得:||x-1|-2|<1,
∴-1<|x-1|-2<1,即1<|x-1|<3,
由1<|x-1|解得:x>2或x<0;由|x-1|<3解得:-2<x<4;
∴原不等式的解為(-2,0)∪(2,4).…(5分)
(Ⅱ)因為?x1∈R,x2∈R,使得f(x1)≤g(x2)成立,
只需要g(x)max≥f(x)min
∵f(x)=|2x-a|+|2x+1|≥|(2x-a)-(2x+1)|=|a+1|,g(x)=2-|x-1|≤2,
∴|a+1|≤2,解得-3≤a≤1,
所以實數(shù)a的取值范圍為{a|-3≤a≤1}.…(10分)
點評 本題考查函數(shù)與方程的應(yīng)用,函數(shù)的最值的求法恒成立問題以及絕對值不等式的解法,考查轉(zhuǎn)化思想以及計算能力.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{2\sqrt{3}}{3}$ | B. | $\sqrt{3}$ | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 4 | B. | 8 | C. | $\frac{1}{4}$ | D. | $\frac{1}{8}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | f′(a)<0,f′(b)<0 | B. | f′(a)>0,f′(b)>0 | C. | f′(a)<0,f′(b)>0 | D. | f′(a)>0,f′(b)<0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{1}{4}$ | B. | $\frac{1}{8}$ | C. | $\frac{1}{16}$ | D. | $\frac{1}{32}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com