欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

1.如圖,直四棱柱ABCD-A1B1C1D1中,AB∥CD,AD⊥AB,AB=2,AD=$\sqrt{2}$,AA1=3,E為CD上一點(diǎn),DE=1,EC=3
(1)證明:BE⊥平面BB1C1C;
(2)求三棱錐B1-EA1C1的體積.

分析 (1)過B作CD的垂線交CD于F,推導(dǎo)出BE⊥BC,BE⊥BB1,由此能證明BE⊥平面BB1C1C.
(2)三棱錐B1-EA1C1的體積:${V}_{{B}_{1}-E{A}_{1}{C}_{1}}$=${V}_{A-{A}_{1}{B}_{1}{C}_{1}}$,由此能求出結(jié)果.

解答 證明:(1)過B作CD的垂線交CD于F,
則$BF=AD=\sqrt{2},EF=AB-DE=1,F(xiàn)C=2$
在$Rt△BFE中,BE=\sqrt{3},Rt△BFC中,BC=\sqrt{6}$.
在△BCE中,∵BE2+BC2=9=EC2,
∴BE⊥BC,∵BB1⊥平面ABCD,∴BE⊥BB1,
∵BC∩BB1=B,∴BE⊥平面BB1C1C,
(2)∵點(diǎn)E到平面A11C1的距離為AA1=3,
∴三棱錐B1-EA1C1的體積:
${V}_{{B}_{1}-E{A}_{1}{C}_{1}}$=${V}_{A-{A}_{1}{B}_{1}{C}_{1}}$=$\frac{1}{3}×A{A}_{1}×{S}_{△{A}_{1}{B}_{1}{C}_{1}}$
=$\frac{1}{3}×3×[\frac{1}{2}×(2+4)×\sqrt{2}-\frac{1}{2}×4×\sqrt{2}]$=$\sqrt{2}$.

點(diǎn)評 本題考查線面垂直的證明,考查幾何體的體積的求法,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識,考查推理論證能力、空間想象能力、運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想、數(shù)形結(jié)合思想,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知向量$\overrightarrow{OA}=(1,-3),\overrightarrow{OB}=(2,-1),\overrightarrow{OC}=(k+1,k-2)$,若A、B、C三點(diǎn)共線,則實(shí)數(shù)k應(yīng)滿足的條件是( 。
A.k=-2B.$k=\frac{1}{2}$C.k=1D.k=-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2016-2017學(xué)年河北省高二文上第一次月考數(shù)學(xué)試卷(解析版) 題型:選擇題

正數(shù)滿足,則的最大值為

A. B. C.1 D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.甲、乙兩艘貨輪都要在某個(gè)泊位?6小時(shí),假定它們在一晝夜的時(shí)間段中隨即到達(dá),則兩船中有一艘在停泊位時(shí),另一艘船必須等待的概率為( 。
A.$\frac{7}{16}$B.$\frac{9}{16}$C.$\frac{1}{2}$D.$\frac{5}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.(1)已知$cosα=-\frac{4}{5}$,且α為第三象限角,求sinα的值;
(2)已知tanα=-3,計(jì)算$\frac{4sinα-2cosα}{5cosα+3sinα}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=|x-1|-|x+2|.
(Ⅰ)求不等式-2<f(x)<0的解集A;
(Ⅱ)若m,n∈A,證明:|1-4mn|>2|m-n|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知函數(shù)f(x)=cosx,若存在實(shí)數(shù)x1,x2,…,xm(m≥2,m∈N)滿足條件0≤x1<x2<…<xm≤6π,且|f(x1)-f(x2)|+…+|f(xm-1)-f(xm)|=12,則m的最小值為( 。
A.6B.7C.8D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)z1,z2是復(fù)數(shù),則下列結(jié)論中正確的是( 。
A.若${z_1}^2+{z_2}^2>0$,則 ${z_1}^2>-{z_2}^2$
B.$|{{z_1}-{z_2}}|=\sqrt{{z_1}^2+{z_2}^2-4{z_1}{z_2}}$
C.${z_1}^2+{z_2}^2=0?{z_1}={z_2}$
D.|z1|2=|$\overline{{z}_{1}}$|2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.設(shè)函數(shù)f(x)=4sin(ωx+$\frac{π}{3}$)(ω>0)的最小正周期為π,將函數(shù)f(x)的圖象上的每個(gè)點(diǎn)的橫坐標(biāo)伸長為原來的2倍,縱坐標(biāo)不變得到函數(shù)g(x)的圖象.
(1)求函數(shù)f(x)的對稱中心的坐標(biāo)及f(x)的遞增區(qū)間;
(2)求函數(shù)g(x)在區(qū)間[-$\frac{π}{6}$,$\frac{π}{2}$]上的值域.

查看答案和解析>>

同步練習(xí)冊答案