欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

3.已知tanα=2,則$\frac{sin2α}{si{n}^{2}α+sinαcosα-cos2α-1}$=1.

分析 由sin2α=2sinαcosα,cos2α=2cos2α-1,把原式等價轉化為$\frac{2sinαcosα}{si{n}^{2}α+sinαcosα-2co{s}^{2}α}$,再把分子分母同時除以cos2α,得到$\frac{2tanα}{ta{n}^{2}α+tanα-2}$,由此能求出結果.

解答 解:∵tanα=2,
∴$\frac{sin2α}{si{n}^{2}α+sinαcosα-cos2α-1}$
=$\frac{2sinαcosα}{si{n}^{2}α+sinαcosα-2co{s}^{2}α}$
=$\frac{2tanα}{ta{n}^{2}α+tanα-2}$
=$\frac{4}{4+2-2}$
=1.
故答案為:1.

點評 本題考查三角函數(shù)的化簡求值,是中檔題,解題時要注意二倍角公式、降階公式、同角三角函數(shù)關系式的合理運用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

17.設數(shù)列{an}的首項為1,前n項和為Sn,且Sn+1=n2+an+1(n∈N*).
(1)求數(shù)列{an}的通項公式;
(2)設bn=an•2${\;}^{{a}_{n}}$,Tn是數(shù)列{bn}的前n項和,求Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知等差數(shù)列{an},公差d>0,前n項和為Sn,且滿足a2a3=45,a1+a4=14.
(1)求數(shù)列{an}的通項公式及前n項和Sn;
(2)設${b_n}=\frac{S_n}{{n-\frac{1}{2}}}$,
①求證{bn}是等差數(shù)列.
②求數(shù)列$\left\{{\frac{1}{{{b_n}•{b_{n+1}}}}}\right\}$的前n項和Tn
③求$\lim_{n→∞}{T_n}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.設a<0,(3x2+a)(2x+b)≥0在(a,b)上恒成立,則b-a的最大值為( 。
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{\sqrt{3}}{3}$D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知全集U=R,A={x|x≥1},B={x|2ax-5>0},
(1)若a=1,求A∩(∁UB).
(2)若A⊆B,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.(1)在△ABC中,若a=1,b=$\sqrt{3}$,B=120°.解三角形.
(2)在△ABC中,若a=3$\sqrt{3}$,b=2,C=150°.求邊c.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.給定函數(shù)①$y={x^{\frac{1}{2}}}$,②$y=x+\frac{1}{x}$,③y=|x-1|,④y=2x+1,其中在區(qū)間(0,1)上單調(diào)遞減的函數(shù)序號是( 。
A.①②B.②③C.③④D.①④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.求下列各式的值:
(1)2$\sqrt{3}×\root{3}{{3\frac{3}{8}}}-\sqrt{12}$
(2)(log25+log4125)•$\frac{{{{log}_3}2}}{{{{log}_{\sqrt{3}}}5}}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.若x+x-1=3,那么x2-x-2的值為( 。
A.$±3\sqrt{5}$B.$-\sqrt{5}$C.$3\sqrt{5}$D.$\sqrt{13}$

查看答案和解析>>

同步練習冊答案